Búsqueda avanzada


Área de conocimiento




Filtrar por:

Tipo de publicación

Autores

Años de Publicación

Editores

Repositorios Orígen

Tipos de Acceso

Idiomas

Materias

Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales

10 resultados, página 1 de 1

Behavior of private retailers in a regulated input market: An empirical analysis of the fertilizer subsidy policy in Nepal

Shriniwas Gautam Dyutiman Choudhary Dil Bahadur Rahut (2022, [Artículo])

The private sector in Nepal participates in the regulated import and distribution of three types of subsidized fertilizer. However, almost 55% of the agrovets (family-owned microenterprises) that retail agricultural inputs do not comply. Many farmers rely on the fertilizer purchased through these agrovets, including subsidized ones. There is no private sector importer of the three types of fertilizer covered by the subsidy program, which indicates that the agrovets either acquire these through leakage in the government distribution system or through illegal cross-border trade from India, both of which are considered legal noncompliance. We discern the determinants for this noncompliant behavior of agrovets using logistic regression. The results from logistic regression suggest that the agrovets that are more likely to comply are registered, have membership in business associations, and have a higher number of competitors. Those with diversified business portfolios and covering a greater number of districts are less likely to comply. Key informants, consisting of both public and private sector stakeholders, were solicited for their views on solving this noncompliant behavior. The private sector unanimously asserts the need for deregulation of fertilizer imports and the participation of agrovets in the distribution of the subsidized fertilizer. In contrast, the public sector is skeptical of the ability and trustworthiness of the private sector in the import and distribution of quality fertilizer. We propose a middle ground to mitigate private sector noncompliance and suggest a policy revisit to increase the fertilizer supply and distribution efficiency.

Fertilizer Subsidy Policy Input Retailers CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA FERTILIZERS POLICIES MARKET REGULATIONS

Sustainable maize intensification through site-specific nutrient management advice: Experimental evidence from Nigeria

Miet Maertens Oyakhilomen Oyinbo Tahirou Abdoulaye Jordan Chamberlin (2023, [Artículo])

There is growing evidence on the impacts of site-specific nutrient management (SSNM) from Asia. The evidence for Sub-Saharan Africa (SSA), where SSNM developments are more recent and where conditions concerning soil fertility and fertilizer use differ importantly from those in Asia, is extremely scarce. We evaluate a SSNM advisory tool that allows extension agents to generate fertilizer recommendations tailored to the specific situation of an individual farmer’s field, using a three-year randomized controlled trial with 792 smallholder farmers in the maize belt of northern Nigeria. Two treatment arms were implemented: T1 and T2 both provide SSNM information on nutrient use and management, but T2 provides additional information on maize price distributions and the associated variability of expected returns to fertilizer use. We estimate average and heterogenous intent-to-treat effects on agronomic, economic and environmental plot-level outcomes. We find that T1 and T2 lead to substantial increases (up to 116%) in the adoption of good fertilizer management practices and T2 leads to incremental increases (up to 18%) in nutrient application rates, yields and revenues. Both treatments improve low levels of nutrient use efficiency and reduce high levels of greenhouse gas emission intensity, after two years of treatment. Our findings underscore the possibility of a more gradual and sustainable intensification of smallholder agriculture in SSA, as compared with the Asian Green Revolution, through increased fertilizer use accompanied by improved fertilizer management.

Randomized Controlled Trial CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TECHNOLOGY ADOPTION AGRICULTURAL EXTENSION GREEN REVOLUTION FERTILIZERS GREENHOUSE GAS EMISSIONS

Optimizing nitrogen fertilizer and planting density levels for maize production under current climate conditions in Northwest Ethiopian midlands

Kindie Tesfaye Dereje Ademe Enyew Adgo (2023, [Artículo])

This study determined the most effective plating density (PD) and nitrogen (N) fertilizer rate for well-adapted BH540 medium-maturing maize cultivars for current climate condition in north west Ethiopia midlands. The Decision Support System for Agrotechnology Transfer (DSSAT)-Crop Environment Resource Synthesis (CERES)-Maize model has been utilized to determine the appropriate PD and N-fertilizer rate. An experimental study of PD (55,555, 62500, and 76,900 plants ha−1) and N (138, 207, and 276 kg N ha−1) levels was conducted for 3 years at 4 distinct sites. The DSSAT-CERES-Maize model was calibrated using climate data from 1987 to 2018, physicochemical soil profiling data (wilting point, field capacity, saturation, saturated hydraulic conductivity, root growth factor, bulk density, soil texture, organic carbon, total nitrogen; and soil pH), and agronomic management data from the experiment. After calibration, the DSSAT-CERES-Maize model was able to simulate the phenology and growth parameters of maize in the evaluation data set. The results from analysis of variance revealed that the maximum observed and simulated grain yield, biomass, and leaf area index were recorded from 276 kg N ha−1 and 76,900 plants ha−1 for the BH540 maize variety under the current climate condition. The application of 76,900 plants ha−1 combined with 276 kg N ha−1 significantly increased observed and simulated yield by 25% and 15%, respectively, compared with recommendation. Finally, future research on different N and PD levels in various agroecological zones with different varieties of mature maize types could be conducted for the current and future climate periods.

Maize Model Planting Density CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE MODELS SPACING NITROGEN FERTILIZERS YIELDS

Impact of manures and fertilizers on yield and soil properties in a rice-wheat cropping system

Alison Laing Akbar Hossain (2023, [Artículo])

The use of chemical fertilizers under a rice-wheat cropping system (RWCS) has led to the emergence of micronutrient deficiency and decreased crop productivity. Thus, the experiment was conducted with the aim that the use of organic amendments would sustain productivity and improve the soil nutrient status under RWCS. A three-year experiment was conducted with different organic manures i.e. no manure (M0), farmyard manure@15 t ha-1 (M1), poultry manure@6 t ha-1(M2), press mud@15 t ha-1(M3), rice straw compost@6 t ha-1(M4) along with different levels of the recommended dose of fertilizer (RDF) i.e. 0% (F1), 75% (F2 and 100% (F3 in a split-plot design with three replications and plot size of 6 m x 1.2 m. Laboratory-based analysis of different soil as well as plant parameters was done using standard methodologies. The use of manures considerably improved the crop yield, macronutrients viz. nitrogen, phosphorus, potassium and micronutrients such as zinc, iron, manganese and copper, uptake in both the crops because of nutrient release from decomposed organic matter. Additionally, the increase in fertilizer dose increased these parameters. The system productivity was maximum recorded under F3M1 (13,052 kg ha-1) and results were statistically identical with F3M2 and F3M3. The significant upsurge of macro and micro-nutrients in soil and its correlation with yield outcomes was also observed through the combined use of manures as well as fertilizers. This study concluded that the use of 100% RDF integrated with organic manures, particularly farmyard manure would be a beneficial resource for increased crop yield, soil nutrient status and system productivity in RWCS in different regions of India.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ORGANIC FERTILIZERS YIELDS SOIL PROPERTIES RICE WHEAT CROPPING SYSTEMS

Nitrogen fertilizer application alters the root endophyte bacterial microbiome in maize plants, but not in the stem or rhizosphere soil

Alejandra Miranda Carrazco Yendi Navarro-Noya Bram Govaerts Nele Verhulst Luc Dendooven (2022, [Artículo])

Plant-associated microorganisms that affect plant development, their composition, and their functionality are determined by the host, soil conditions, and agricultural practices. How agricultural practices affect the rhizosphere microbiome has been well studied, but less is known about how they might affect plant endophytes. In this study, the metagenomic DNA from the rhizosphere and endophyte communities of root and stem of maize plants was extracted and sequenced with the “diversity arrays technology sequencing,” while the bacterial community and functionality (organized by subsystems from general to specific functions) were investigated in crops cultivated with or without tillage and with or without N fertilizer application. Tillage had a small significant effect on the bacterial community in the rhizosphere, but N fertilizer had a highly significant effect on the roots, but not on the rhizosphere or stem. The relative abundance of many bacterial species was significantly different in the roots and stem of fertilized maize plants, but not in the unfertilized ones. The abundance of N cycle genes was affected by N fertilization application, most accentuated in the roots. How these changes in bacterial composition and N genes composition might affect plant development or crop yields has still to be unraveled.

Bacterial Community Structure DArT-Seq Bacterial Community Functionality Genes Involved in N Cycling CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURAL PRACTICES MAIZE RHIZOSPHERE STEMS NITROGEN FERTILIZERS

Transición de leña a gas licuado a presión (GLP) en el sur de México, oportunidad para la mitigación del cambio climático en la región menos desarrollada del país

Transition from biomass to LP gas in southern Mexico, an opportunity for climate change mitigation in the least developed region in the country

Elio Guarionex Lagunes Díaz María Eugenia González Rosende Alfredo Ortega Rubio (2015, [Artículo])

"En los estados del sur de México, entre un 25% y un 55% de los hogares dependen de la leña para cocinar, lo cual trae consecuencias en el ambiente, el desarrollo y la salud. No obstante, el conocimiento de estas consecuencias y la migración hacia combustibles modernos ha permanecido relegada de las políticas de desarrollo. En este trabajo, partiendo de una descripción del panorama de uso de leña en el país y su importancia como fuente de energía, se presenta una aproximación para estimar ahorros en emisiones de CO2 logrables por la transición a gas licuado a presión (GLP), los cuales pueden alcanzar 3.14 Mt CO2e, 26% menos que el escenario base. Se finaliza con una discusión de la transición hacia combustibles modernos, las barreras que la impiden y los logros y fallos de la distribución de estufas ahorradoras de leña, la principal iniciativa gubernamental para aliviar el consumo de leña en el país."

"Between 25% and 55% of households in southern Mexico depend on biomass for cooking, which carries serious consequences on the environment, development and health. In spite of the knowledge of these consequences, transition from biomass to modern fuels has remained outside energy and development policies. In the present work, after describing the panorama of fuelwood use in the country and its importance as an energy source, an approach is presented for estimating CO2 savings achievable by transition to pressurized liquefied gas (LP). These savings can reach 3.14 Mt CO2e, 26% less than the baseline scenario. At the end we discuss on the transition to modern fuels in Mexico, the barriers that hinder it and the achievements and failures of the distribution of fuelwood saving cookstoves, as the only and most important governmental initiative to alleviate biomass use, comparing it with other priorities in the government's agenda."

Transición energética, cambio climático, política energética. Energy transition, climate change, energy policy. CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO METEOROLOGÍA CONTAMINACIÓN ATMOSFÉRICA CONTAMINACIÓN ATMOSFÉRICA

Control de sistemas usando aprendizaje de máquina

Systems control using machine learning

Jesús Martín Miguel Martínez (2023, [Tesis de maestría])

El aprendizaje por refuerzo es un paradigma del aprendizaje de máquina con un amplio desarrollo y una creciente demanda en aplicaciones que involucran toma de decisiones y control. Es un paradigma que permite el diseño de controladores que no dependen directamente del modelo que describe la dinámica del sistema. Esto es importante ya que en aplicaciones reales es frecuente que no se disponga de dichos modelos de manera precisa. Esta tesis tiene como objetivo implementar un controlador óptimo en tiempo discreto libre de modelo. La metodología elegida se basa en algoritmos de aprendizaje por refuerzo, enfocados en sistemas con espacios de estado y acción continuos a través de modelos discretos. Se utiliza el concepto de función de valor (Q-función y función V ) y la ecuación de Bellman para resolver el problema del regulador cuadrático lineal para un sistema mecánico masa-resorte-amortiguador, en casos donde se tiene conocimiento parcial y desconocimiento total del modelo. Para ambos casos las funciones de valor son definidas explícitamente por la estructura de un aproximador paramétrico, donde el vector de pesos del aproximador es sintonizado a través de un proceso iterativo de estimación de parámetros. Cuando se tiene conocimiento parcial de la dinámica se usa el método de aprendizaje por diferencias temporales en un entrenamiento episódico, que utiliza el esquema de mínimos cuadrados con mínimos cuadrados recursivos en la sintonización del crítico y descenso del gradiente en la sintonización del actor, el mejor resultado para este esquema es usando el algoritmo de iteración de valor para la solución de la ecuación de Bellman, con un resultado significativo en términos de precisión en comparación a los valores óptimos (función DLQR). Cuando se tiene desconocimiento de la dinámica se usa el algoritmo Q-learning en entrenamiento continuo, con el esquema de mínimos cuadrados con mínimos cuadrados recursivos y el esquema de mínimos cuadrados con descenso del gradiente. Ambos esquemas usan el algoritmo de iteración de política para la solución de la ecuación de Bellman, y se obtienen resultados de aproximadamente 0.001 en la medición del error cuadrático medio. Se realiza una prueba de adaptabilidad considerando variaciones que puedan suceder en los parámetros de la planta, siendo el esquema de mínimos cuadrados con mínimos cuadrados recursivos el que tiene los mejores resultados, reduciendo significativamente ...

Reinforcement learning is a machine learning paradigm with extensive development and growing demand in decision-making and control applications. This technique allows the design of controllers that do not directly depend on the model describing the system dynamics. It is useful in real-world applications, where accurate models are often unavailable. The objective of this work is to implement a modelfree discrete-time optimal controller. Through discrete models, we implemented reinforcement learning algorithms focused on systems with continuous state and action spaces. The concepts of value-function, Q-function, V -function, and the Bellman equation are employed to solve the linear quadratic regulator problem for a mass-spring-damper system in a partially known and utterly unknown model. For both cases, the value functions are explicitly defined by a parametric approximator’s structure, where the weight vector is tuned through an iterative parameter estimation process. When partial knowledge of the dynamics is available, the temporal difference learning method is used under episodic training, utilizing the least squares with a recursive least squares scheme for tuning the critic and gradient descent for the actor´s tuning. The best result for this scheme is achieved using the value iteration algorithm for solving the Bellman equation, yielding significant improvements in approximating the optimal values (DLQR function). When the dynamics are entirely unknown, the Q-learning algorithm is employed in continuous training, employing the least squares with recursive least squares and the gradient descent schemes. Both schemes use the policy iteration algorithm to solve the Bellman equation, and the system’s response using the obtained values was compared to the one using the theoretical optimal values, yielding approximately zero mean squared error between them. An adaptability test is conducted considering variations that may occur in plant parameters, with the least squares with recursive least squares scheme yielding the best results, significantly reducing the number of iterations required for convergence to optimal values.

aprendizaje por refuerzo, control óptimo, control adaptativo, sistemas mecánicos, libre de modelo, dinámica totalmente desconocida, aproximación paramétrica, Q-learning, iteración de política reinforcement learning, optimal control, adaptive control, mechanical systems, modelfree, utterly unknown dynamics, parametric approximation, Q-learning, policy iteration INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ORDENADORES INTELIGENCIA ARTIFICIAL INTELIGENCIA ARTIFICIAL