Title
Non-autonomous Ginzburg-Landau solitons using the He-Li mapping method
Author
MAXIMINO PEREZ MALDONADO
Haret Codratian Rosu
ELIZABETH FLORES GARDUÑO
Access level
Open Access
Alternative identifier
doi: https://doi.org/10.30878/ces.v27n4a3
Subjects
Summary or description
"We find and discuss the non-autonomous soliton solutions in the case of variable nonlinearity and dispersion implied by the Ginzburg-Landau equation with variable coefficients. In this work we obtain non-autonomous Ginzburg-Landau solitons from the standard autonomous Ginzburg-Landau soliton solutions using a simplified version of the He-Li mapping. We find soliton pulses of both arbitrary and fixed amplitudes in terms of a function constrained by a single condition involving the nonlinearity and the dispersion of the medium. This is important because it can be used as a tool for the parametric manipulation of these non-autonomous solitons. "
Publisher
Universidad Autónoma del Estado de México
Publish date
2022
Publication type
Article
Publication version
Published Version
Information Resource
Format
application/pdf
Relation
&
Flores Garduño, E. (2020). Non-autonomous Ginzburg-Landau solitons using the He-Li mapping method. CIENCIA Ergo-Sum, 27(4). doi:10.30878/ces.v27n4a3
Citation suggestion
Pérez Maldonado, M., C. Rosu, H.,
Source repository
Repositorio IPICYT
Downloads
2