Title

Non-autonomous Ginzburg-Landau solitons using the He-Li mapping method

Author

MAXIMINO PEREZ MALDONADO

Haret Codratian Rosu

ELIZABETH FLORES GARDUÑO

Access level

Open Access

Alternative identifier

doi: https://doi.org/10.30878/ces.v27n4a3

Summary or description

"We find and discuss the non-autonomous soliton solutions in the case of variable nonlinearity and dispersion implied by the Ginzburg-Landau equation with variable coefficients. In this work we obtain non-autonomous Ginzburg-Landau solitons from the standard autonomous Ginzburg-Landau soliton solutions using a simplified version of the He-Li mapping. We find soliton pulses of both arbitrary and fixed amplitudes in terms of a function constrained by a single condition involving the nonlinearity and the dispersion of the medium. This is important because it can be used as a tool for the parametric manipulation of these non-autonomous solitons. "

Publisher

Universidad Autónoma del Estado de México

Publish date

2022

Publication type

Article

Publication version

Published Version

Format

application/pdf

Relation

&

Flores Garduño, E. (2020). Non-autonomous Ginzburg-Landau solitons using the He-Li mapping method. CIENCIA Ergo-Sum, 27(4). doi:10.30878/ces.v27n4a3

Citation suggestion

Pérez Maldonado, M., C. Rosu, H.,

Source repository

Repositorio IPICYT

Downloads

2

Comments



You need to sign in or sign up to comment.