Filters
Filter by:
Publication type
- Article (21)
- Conference object (3)
- Master thesis (2)
Authors
- sridhar bhavani (4)
- Susanne Dreisigacker (3)
- Alison Bentley (2)
- Carolina Sansaloni (2)
- Charles Chen (2)
Issue Years
Publishers
- CICESE (2)
- & (1)
- Atmospheric Research, New Zealand (1)
- Centro de Investigaciones Biológicas del Noroeste, s.c. (1)
- Heather M. Patterson, Department of Agriculture and Water Resources, Australia (1)
Origin repository
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (18)
- Repositorio Institucional CICESE (4)
- Repositorio Institucional CIBNOR (2)
- Repositorio IPICYT (1)
- Repositorio Institucional CICY (1)
Access Level
- oa:openAccess (26)
Language
Subject
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (20)
- GENETIC DIVERSITY (AS RESOURCE) (8)
- ECOLOGÍA VEGETAL (6)
- BIOLOGÍA Y QUÍMICA (5)
- CIENCIAS DE LA VIDA (5)
Select the topics of your interest and receive the hottest publications in your email
Characterization of Mediterranean durum wheat for resistance to Pyrenophora tritici-repentis
marwa laribi Khaled Sassi Sarrah Ben M'barek (2022)
Article
Tan Spot Durum Wheat Phenotypic Diversity CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SPOTS HARD WHEAT LANDRACES PHENOTYPIC VARIATION PLANT HEIGHT DISEASE RESISTANCE
Mining alleles for tar spot complex resistance from CIMMYT's maize Germplasm Bank
Martha Willcox Juan Burgueño Daniel Jeffers Zakaria Kehel Rosemary Shrestha Kelly Swarts Edward Buckler Sarah Hearne Charles Chen (2022)
Article
Maize Landraces Maize Genetic Resources Allelic Diversity Rare Alleles Phenotypic Characterization Tropical Maize Phyllachora maydis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE LANDRACES GENETIC RESOURCES ALLELES FOLIAR DISEASES CLIMATE CHANGE
marwa laribi Sarrah Ben M'barek Carolina Sansaloni Susanne Dreisigacker (2023)
Article
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DISEASE RESISTANCE HARD WHEAT GENETIC DIVERSITY GENOME-WIDE ASSOCIATION STUDIES LANDRACES POPULATION STRUCTURE
Prakash Kuchanur Ayyanagouda Patil Pervez Zaidi vinayan mt (2023)
Article
Multi-Parental Synthetics Rapid Cycle Genomic Selection Phenotypic Correlation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE HEAT STRESS MARKER-ASSISTED SELECTION DOUBLED HAPLOIDS PHENOTYPIC VARIATION CLIMATE CHANGE
Sandesh Thapa Darbin Joshi (2022)
Article
Heat Resilient Maize Phenotypic Coefficient of Variation Heritable Traits CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENETIC PARAMETERS MAIZE HYBRIDS
Lesley Boyd sridhar bhavani Cristobal Uauy Annemarie Fejer Justesen Mogens Hovmoller (2022)
Article
Cereals and Grains Pathogen Diversity Puccinia f. sp. tritici Stripe Rust Yellow Rust CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CEREALS FIELD CROPS FUNGI PATHOGENICITY RUSTS TRITICUM AESTIVUM
Spatial phylogenetics in Hechtioideae (Bromeliaceae) reveals recent diversification and dispersal
La filogenética espacial de Hechtioideae (Bromeliaceae) revela diversificación y dispersión reciente
Ricardo Rivera Martinez Ivón Mercedes Ramírez Morillo José Arturo de Nova Vázquez GERMAN CARNEVALI FERNANDEZ CONCHA Juan Pablo Pinzón Katya J. Romero-Soler NESTOR EDUARDO RAIGOZA FLORES (2022)
Background: Hechtioideae is a group of Bromeliaceae that is distributed in Megamexico III. In recent years, evolutionary relationships within this lineage have been studied; however, the biogeography of these plants have not yet been explored from a phylogenetic framework. The integration of geographic and phylogenetic information in the evolutionary study of organisms has facilitated the identification of patterns, as well as the exploration of new hypotheses that allow for the understanding the processes that have influenced the evolutionary history of lineages. Questions and/or Hypotheses: What is the biogeographic history of this lineage? How Hechtioideae has diversified over time? Results: The Neotropical region has the highest species richness of Hechtioideae and the Mexican Transition Zone is the area with the greatest phylogenetic diversity. This lineage presented its highest diversification rate during the late Miocene and Pleistocene (6.5-1 Ma). The ancestral area of the group corresponds to the Neotropical region and the Mexican Transition Zone. In addition, Hechtioideae spread across its current ranges through multiple dispersal events associated with climatic and geological events during the last 10 Ma. Conclusions: Hechtioideae is a group of recent origin whose evolutionary history has been strongly influenced by geological and climatic events over the past 10 Ma, such as the glacial and interglacial periods of the Pleistocene and the great tectonic and volcanic activity that led to the formation of the Trans-Mexican Volcanic Belt. © 2022 Sociedad Botanica de Mexico, A.C. All rights reserved.
Article
ANCESTRAL AREA RECONSTRUCTION BIOGEOGRAPHY CONSERVATION DISTRIBUTION PHYLOGENETIC DIVERSITY BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL
IAN MACGREGOR FORS FEDERICO ESCOBAR SARRIA JUAN FERNANDO ESCOBAR IBAÑEZ NATALIA MESA SIERRA FREDY ALEXANDER ALVARADO ROBERTO Rafael Rueda Hernández CLAUDIA ELIZABETH MORENO ORTEGA Ina Falfán ERICK JOAQUIN CORRO MENDEZ Eduardo Octavio Pineda Arredondo Amandine Bourg JOSE LUIS AGUILAR LOPEZ (2022)
"β-diversity has been under continuous debate, with a current need to better understand the way in which a new wave of measures work. We assessed the results of 12 incidence-based β-diversity indices. Our results of gradual species composition overlap between paired assemblages considering progressive differences in species richness show the following: (i) four indices (β-2, β-3, β-3.s, and βr) should be used cautiously given that results with no shared species retrieve results that could be misinterpreted; (ii) all measures conceived specifically as partitioned components of species compositional dissimilarities ought to be used as such and not as independent measures per se; (iii) the non-linear response of some indices to gradual species composition overlap should be interpreted carefully, and further analysis using their results as dependent variables should be performed cautiously; and (iv) two metrics (βsim and βsor) behave predictably and linearly to gradual species composition overlap. We encourage ecologists using measures of β-diversity to fully understand their mathematical nature and type of results under the scenario to be used in order to avoid inappropriate and misleading inferences."
Article
Beta diversity Nestedness Replacement Richness difference Species turnover BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL
Muhammad Massub Tehseen Fatma Aykut Tonk Ahmed Amri Carolina Sansaloni Ezgi Kurtulus Muhammad Salman Mubarik Kumarse Nazari (2022)
Article
Wheat Landraces Genetic Diversity SNP Markers Analysis of Molecular Variance AMOVA CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BREEDING DISCRIMINANT ANALYSIS GENETIC VARIATION GENETIC DISTANCE GENETIC IMPROVEMENT GENETIC MARKERS HEXAPLOIDY LANDRACES POPULATION STRUCTURE SINGLE NUCLEOTIDE POLYMORPHISM TRITICUM AESTIVUM WHEAT
Yendi Navarro-Noya Bram Govaerts Nele Verhulst Luc Dendooven (2022)
Farmers in Mexico till soil intensively, remove crop residues for fodder and grow maize often in monoculture. Conservation agriculture (CA), including minimal tillage, crop residue retention and crop diversification, is proposed as a more sustainable alternative. In this study, we determined the effect of agricultural practices and the developing maize rhizosphere on soil bacterial communities. Bulk and maize (Zea mays L.) rhizosphere soil under conventional practices (CP) and CA were sampled during the vegetative, flowering and grain filling stage, and 16S rRNA metabarcoding was used to assess bacterial diversity and community structure. The functional diversity was inferred from the bacterial taxa using PICRUSt. Conservation agriculture positively affected taxonomic and functional diversity compared to CP. The agricultural practice was the most important factor in defining the structure of bacterial communities, even more so than rhizosphere and plant growth stage. The rhizosphere enriched fast growing copiotrophic bacteria, such as Rhizobiales, Sphingomonadales, Xanthomonadales, and Burkholderiales, while in the bulk soil of CP other copiotrophs were enriched, e.g., Halomonas and Bacillus. The bacterial community in the maize bulk soil resembled each other more than in the rhizosphere of CA and CP. The bacterial community structure, and taxonomic and functional diversity in the maize rhizosphere changed with maize development and the differences between the bulk soil and the rhizosphere were more accentuated when the plant aged. Although agricultural practices did not alter the effect of the rhizosphere on the soil bacterial communities in the flowering and grain filling stage, they did in the vegetative stage.
Article
Community Assembly Functional Diversity Intensive Agricultural Practices Plant Microbiome CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SUSTAINABLE AGRICULTURE TILLAGE SOIL BACTERIA MAIZE