Filtrar por:
Tipo de publicación
- Event (4582)
- Artículo (786)
- Tesis de maestría (493)
- Tesis de doctorado (323)
- Dataset (250)
Autores
- Servicio Sismológico Nacional (IGEF-UNAM) (4582)
- Fernando Nuno Dias Marques Simoes (250)
- WALDO OJEDA BUSTAMANTE (39)
- AMOR MILDRED ESCALANTE (32)
- IVÁN GALICIA ISASMENDI (32)
Años de Publicación
Editores
- UNAM, IGEF, SSN, Grupo de Trabajo (4582)
- Cenoteando, Facultad de Ciencias, UNAM (cenoteando.mx) (249)
- Instituto Mexicano de Tecnología del Agua (204)
- Instituto Tecnológico y de Estudios Superiores de Monterrey (105)
- Universidad Autónoma de San Luis Potosí (85)
Repositorios Orígen
- Repositorio de datos del Servicio Sismológico Nacional (4582)
- Repositorio institucional del IMTA (568)
- Cenotes de Yucatan (250)
- COLECCIONES DIGITALES COLMEX (199)
- Repositorio Institucional NINIVE (186)
Tipos de Acceso
- oa:openAccess (6861)
- oa:embargoedAccess (9)
- oa:Computación y Sistemas (1)
Idiomas
Materias
- Sismología (13746)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (5150)
- CIENCIAS DE LA TIERRA Y DEL ESPACIO (4631)
- GEOFÍSICA (4585)
- SISMOLOGÍA Y PROSPECCIÓN SÍSMICA (4584)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
MELISA TREJO MALDONADO (2022, [Otro, Trabajo de grado, doctorado])
This dissertation aimed to investigate the synthesis of poly(styrene)-block-poly(lactic acid) (PS-b-PLA) copolymers with triazole derivatives as a junction between blocks. The synthetic pathway towards the obtention of these copolymers comprised the synthesis of a benzylic initiator that is active in an Atomic Transfer Radical Polymerization (ATRP) to obtain a polystyrene (PS) precursor, a Ring Opening Polymerization (ROP) to obtain a polylactic acid (PLA) precursor, and a ‘click’ chemistry coupling of their end functional groups, the synthesized copolymers were used as templates for the preparation of thin films. Self-assembly behavior of these films was studied by Solvent Vapor Annealing (SVA), Thermal Annealing (TA) and Hydrolysis of the as-spun substrates and monitored their morphological changes by means of Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) techniques. Self-assembly via SVA and TA proved to be strongly dependent on the pretreatment of the substrates. The as-spun substrates exhibited the formation of pores on the surface, which is in good agreement with the cylinder morphology that is usually expected for these systems. It was concluded that as- spun films can be a good alternative to form an ordered pattern at a nanoscale to form a triazole functionalized porous polystyrene matrix after selectively removing the PLA microdomains. The newly functionalized porous matrix can be applied as templates for the preparation of nanomaterials or inthe energy storage field in electronics.
Doctorado en tecnología de polímeros BIOLOGÍA Y QUÍMICA QUÍMICA QUÍMICA
MONICA AIMEE CENICEROS REYES (2022, [Tesis de doctorado])
En el presente trabajo se desarrollaron recubrimientos nanoestructurados a base de resinas epóxicas y óxido de grafeno funcionalizado (fGO) con el agente de acoplamiento de tipo silano 3-aminopropiltrietoxisilano (APTES) a diferentes concentraciones (0.01, 0.1, 0.2 y 0.4 M). Posteriormente, estos nanocompuestos se aplicaron sobre sustratos metálicos con la finalidad de evaluar el efecto que tiene el grado de funcionalización del GO con el APTES en las propiedades anticorrosivas de un recubrimiento preparado a partir del sistema Epoxi/fGO. El desarrollo del proyecto se llevó a cabo en tres etapas: I) Síntesis y caracterización del óxido de grafito mediante el método de Hummers modificado, II) la funcionalización del óxido de grafeno con el silano APTES en solución y III) el desarrollo del nanocompuesto epóxico (Epoxi/fGO) y su aplicación mediante la técnica de inmersión, sobre sustratos metálicos de lámina de acero de bajo carbono A36. Se logró la obtención del óxido de grafito con una concentración de los grupos funcionales típicos reportados en la literatura (hidroxilos, carboxilos, carbonilos y epóxido) de ~ 32 % y un ~ 37 % determinado por XPS y TGA respectivamente. Se determinó mediante FTIR que la funcionalización ocurrió: i) por apertura de anillo y ii) por silanización al encontrar evidencia de la presencia de los enlaces Si-O-C, Si-O-Si y C-N, producto de ambos mecanismos de reacción. También se encontró que en los nanocompuestos Epoxi/ fGO (T1 0.01 M y T2 0.1 M) se obtiene la mejor dispersión fGO en la resina epóxica y mejores propiedades barrera de los recubrimientos preparados con estos nanocompuestos; obteniendo los mayores valores de impedancia |Z|0.1 Hz = 1.81E09 y Z|0.1 Hz = 1.48E09 ohm cm, respectivamente; así como las velocidades de corrosión más bajas T1 corr = 1.92E-05 y T2 corr = 2.50E-05 vs Acero corr = 1.09E-02 mm/año, respectivamente.
Estos resultados son de gran importancia ya que se demostró que funcionalizar al GO con una solución de silano a bajas concentraciones, es una vía para preparar recubrimientos con un buen desempeño barrera, haciendo útiles estos recubrimientos para aplicaciones anticorrosivas de estructuras de acero de bajo carbón; en las concentraciones de T3 0.2 M y T4 0.4 M se observó la presencia de estructuras de sílice, lo que da lugar a la formación de un sistema con características diferentes a lo buscado en este trabajo.
Doctorado en tecnología de polímeros BIOLOGÍA Y QUÍMICA QUÍMICA QUÍMICA
Edgar Miguel García Carrillo (2022, [Tesis de doctorado])
En el diseño de compuestos poliméricos, es de gran interés poder predecir y optimizar sus propiedades térmicas, eléctricas y mecánicas, antes de su fabricación, con el fin de reducir el trabajo experimental y de obtener materiales con mejor desempeño para diversas aplicaciones. Sin embargo, esta tarea es complicada debido al comportamiento complejo y no lineal de las propiedades de los compuestos. En este trabajo se desarrollaron redes neuronales artificiales (RNA) como modelos de predicción con el objetivo de aproximar la conductividad térmica, la conductividad eléctrica y las propiedades de tensión de compuestos de polietileno de alta densidad (HDPE) adicionados con partículas de carbono (PC). En la implementación de estos modelos se utilizaron datos obtenidos experimentalmente. Los compuestos fueron preparados mediante mezclado en fundido, utilizando cuatro tipos de partículas de carbono de distinta geometría a diferentes concentraciones. Las RNA de tipo perceptrón multicapa (MLP), entrenadas mediante el algoritmo Levenberg-Marquardt y con una sola capa oculta mostraron el mejor desempeño predictivo. Los modelos de RNA mostraron una buena correlación entre los datos experimentales y simulados, lo cual está evidenciado por factores de correlaciones superiores a 0.97 en los datos de prueba. Además, los modelos de predicción de la conductividad térmica y del módulo elástico basados en RNA se ajustaron en mayor medida a los datos experimentales en comparación con modelos analíticos reportados en la literatura. También, se determinó el impacto relativo de cada variable de entrada sobre las propiedades de los compuestos, a través del tratamiento de los pesos sinápticos de las RNA mediante el método connection weight. Las ecuaciones derivadas de las RNA se utilizaron como funciones de ajuste de un algoritmo genético multi- objetivo (MOGA) con el fin de optimizar los parámetros de diseño que permiten maximizar la conductividad térmica y el módulo elástico, así como minimizar la conductividad eléctrica de los compuestos. Como resultado de la optimización, se obtuvo un conjunto de soluciones óptimas que pertenecen a la frontera de Pareto.
Como resultado de la optimización, se obtuvo un conjunto de soluciones óptimas que pertenecen a la frontera de Pareto. Una prueba de conformidad se llevó a cabo para validar la capacidad de optimización del método de algoritmos genéticos. Finalmente, este modelo podría ser adaptado para su aplicación en otras propiedades de compuestos, así como en un intervalo de variables extendido.
Doctorado en tecnología de polímeros BIOLOGÍA Y QUÍMICA QUÍMICA QUÍMICA
Daniela Alejandra Abreu Caceres (2022, [Tesis de maestría])
La eficiencia de los materiales compuestos complejos es importante a la hora de optimizar y predecir sus propiedades térmicas y eléctricas, con el fin, de ahorrar recursos, gastos y tiempo invertido antes de su fabricación, por ello, se emplean herramientas tradicionales como lo son, el uso de modelos analíticos, estos modelos, resultan fáciles de analizar, sin embargo, presenta una baja predicción a comparación de los datos experimentales. El uso de herramientas más sofisticadas, como lo son, la inteligencia artificial y una de sus ramas, el aprendizaje de máquina, resultan ser más precisos a la hora de optimizar valores. En este trabajo se analizaron las conductividades térmicas y eléctricas de los compuestos presentados en diferentes concentraciones a través de modelos analíticos, los cuales resultaron subestimar los valores de k y sobreestimar los valores de σ, con sus respectivas excepciones. Esto puede sugerir que los modelos analíticos, no aproximan los valores obtenidos experimentalmente en todos los casos. También se desarrollaron redes neuronales artificiales (RNA) como modelos de predicción con el objetivo de aproximar la conductividad térmica del polipropileno (PP) adicionados con nanotubos de carbono de pared múltiple (MWCNT), implementando datos obtenidos experimentalmente. Los compuestos fueron preparados mediante mezclado en fundido, utilizando diferentes tipos de concentraciones (1, 2, 3 y 4%) tanto con el tratamiento, como sin el tratamiento de ultrasonido. Las RNA de tipo perceptrón multicapa (MLP), entrenadas mediante el algoritmo Levenberg-Marquardt y con 1 capa oculta mostraron el mejor desempeño predictivo. Los modelos de RNA mostraron una buena correlación entre los datos experimentales y simulados, lo cual está evidenciado por factores de correlaciones superiores a 0.99 en los datos de prueba. Además, los modelos de predicción de la conductividad térmica basados en RNA se ajustaron en mayor medida a los datos experimentales en comparación con modelos analíticos reportados en la literatura.
Maestría en tecnología de polímeros BIOLOGÍA Y QUÍMICA QUÍMICA QUÍMICA
JOSE DAVID ZULUAGA PARRA (2022, [Tesis de doctorado])
En el presente trabajo se propuso la fosfatación del hueso de aguacate con ácido fosfórico, además de la adición de urea para mejorar la estabilidad térmica y conferirle propiedades de retardancia a la flama intrínsecas al hueso de aguacate. Donde se estableció que 3 h de reacción y una concentración de ácido/urea de 1:4 fue suficiente para alcanzar una comparación de fósforo y nitrógeno cerca de 11%, de igual manera se determinó que la fosforilación mejora la estabilidad térmica del hueso de aguacate y le confiere características de retardancia a la flama, pero el biocompuesto lavado con NaOH 1N reemplaza a la urea con sodio en forma de iones y la urea promueve la formación de una capa carbonosa protegiendo al polímero mientras que el sodio no.
De igual manera, se estudió la inserción de anhídrido maleico (AM) en poli (ácido láctico) (PLA) (PLA-g-AM), buscando una relación de peróxido de dicumilo / anhídrido maleico (DCP:AM) adecuada para obtener el mayor grado de injerto. Se encontró que la relación 1:10 generó el mayor grado de injerto, que fue cerca del 1%; esto sin que el peso molecular del PLA se haya modificado significativamente. En seguida, partiendo del PLA-g-AM, se preparó el PLA funcionalizado con polifosfato de amonio (PLA-g-APP). Es importante mencionar que esta modificación química del PLA se llevó a cabo “en fundido”, sin la utilización de solvente alguno. Finalmente, se encontró que las propiedades mecánicas y la resistencia a la flama de los compuestos de PLA-g-APP son superiores a las del PLA puro. mejoran al estar funcionalizado el PLA con APP, en adición se mejora la estabilidad térmica de los compuestos de PLA y APP.
Por último, se estudió el efecto en conjunto entre el hueso de aguacate modificado y el APP, donde se estudió el aporte individual de cada de uno de los componentes formulados, se estudió el efecto en la retardancia a la flama del PLA-g-APP y el hueso de aguacate modificado, sobre una matriz de PLA/EVA, mediante pruebas de cono calorimétrico, UL-94 y LOI, donde se observó, una mejora en las propiedades de retardancia a la flama y se alcanzó una clasificación V-0. Se complementaron estos resultados con estudios fisicoquímicos a las cenizas del cono calorimétrico, donde se pudo proponer un mecanismo de retardancia, el cual es por intumescencia, además se determinó que la modificación del hueso de aguacate tiene un efecto positivo sobre la biodegradabilidad de los biocompuestos.
Doctorado en tecnología de polímeros BIOLOGÍA Y QUÍMICA QUÍMICA QUÍMICA
DAYANARY GONZALEZ VELAZQUEZ (2022, [Tesis de maestría])
Se sintetizaron copolímeros de estireno-co-acrilonitrilo (St/AN) en dos composiciones (80:20 y 90:10) mediante polimerización en masa vía radicales libres utilizando BPO como agente iniciador, para después realizar el cambio del grupo nitrilo a tetrazol (St/VTz) mediante una reacción de cicloadición 1,3-dipolar de Huisgen. Posteriormente se llevó a cabo la alquilación de los copolímeros St/VTz utilizando 1-bromobutano, 1-bromohexano y 1-bromooctano como agentes alquilantes, para injertar cadenas alifáticas laterales de 4, 6 y 8 átomos de carbono (St/VTz-nC). Por último, se llevó a cabo la sulfonación de los diferentes sistemas poliméricos (St/AN-S, St/VTz-S y St/VTz-nC:S) utilizando ácido sulfúrico concentrado (H2SO4) y una concentración de agente sulfonante de 100% mol con respecto a los anillos aromáticos teóricamente presentes, durante 4 h. La formación de los copolímeros fue corroborada mediante FT-IR y 1H y 13C RMN, además fueron caracterizados térmicamente mediante TGA y DSC y se determinó su masa molecular por GPC. Se prepararon membranas a partir de los copolímeros sulfonados utilizando el método de casting y posteriormente fueron evaluadas mediante absorción de agua (WU), Capacidad de Intercambio Iónico (IEC), Grado de Sulfonación (DS), Espectroscopía de Impedancia Electroquímica (EIS), y mecánicamente por Análisis Termomecánico (TMA). Los copolímeros con y sin sulfonación exhibieron las bandas vibratorias y las señales correspondientes a los grupos funcionales asociados a los comonómeros involucrados, así como el grupo sulfónico. La masa molecular de los copolímeros fue superior a 100,000 g/mol para todos los sistemas evaluados y térmicamente estables por encima de 200 °C, indicando que la alquilación no tiene un efecto significativo sobre la estabilidad térmica, mientras la sulfonación sí la reduce.
Sin embargo, los copolímeros continuaron siendo térmicamente estables por encima de los 150 °C. Se obtuvieron valores de Tg de ~110 °C para la serie St/AN, pero mayores para el sistema St/VTz, específicamente en el copolímero St/VTz-82, valores que disminuyen con el proceso de alquilación y que posteriormente incrementan nuevamente con la sulfonación, con valores por encima de los 100 °C, a excepción de los copolímeros St/VTz-82:6C:S y St/VTz-82:8C:S. Las propiedades mecánicas mostraron que la modificación del grupo nitrilo a tetrazol conlleva a un incremento en los valores de E*, mientras que la alquilación de los materiales disminuye los valores conforme la cadena alifática crece. Por otro lado, los copolímeros sulfonados con la composición 80:20 presentaron un incremento de E*, mientras que los 90:10 tuvieron un efecto contrario. Las membranas preparadas a partir de los copolímeros
sulfonados presentaron valores de WU de hasta 14 % y un IEC de hasta 3.58 mmol g-1. El grado de sulfonación (DS) de los copolímeros calculado por IEC llegó hasta 38% y por TGA solo a 26%. Los sistemas evaluados mediante EIS presentaron resistencias menores a 10 Ω por lo que los valores de conductividad protónica (σ) fueron hasta 6.86x10-3 y 8.02x10-3 Scm-1. Con los resultados obtenidos se concluyó que los copolímeros sulfonados basados en estireno-co-acrilonitrilo, estireno-co-viniltetrazol y estireno-co-viniltetrazol N- alquilado son materiales prometedores para su aplicación en celdas de combustible, con valores de conductividad protónica cercanos al Nafion, pero con valores superiores de IEC, destacando la membrana basada en el copolímero St/VTz-91:8C:S debido a los resultados obtenidos en cuanto a propiedades térmicas, mecánicas y de conductividad protónica.
Maestría en tecnología de polímeros BIOLOGÍA Y QUÍMICA QUÍMICA QUÍMICA
Juan Carlos Romero Cabello (2022, [Tesis de maestría])
En esta tesis se sintetizaron copolímeros de bloques anfífilos compuestos por un bloque hidrófilo de poli(oxialquileno), como el polietilenglicol (PEG) o el metil polietilenglicol (MPEG) y un bloque termosensible de poli(N-isopropilacrilamida) (PNIPAM). La síntesis se llevó a cabo mediante la técnica de polimerización radicálica controlada denominada ATRP. Estos copolímeros están clasificados como materiales biocompatibles y biodegradables por lo que el propósito de este trabajo es utilizarlos como sistemas de liberación de fármacos. El homopolímero de bloque termosensible (PNIPAM) experimenta una temperatura de solución crítica baja (LSCT), cercana a la temperatura corporal (37oC), lo que permite su uso en aplicaciones biomédicas. El copolímero de bloque anfífilo MPEG/PEG-b-PNIPAM se funcionalizó al final de la cadena del polímero con azida de sodio (NaN3) para obtener MPEG/PEG-b-PNIPAM-N3 que luego se hizo reaccionar con 3- etinil piridina a través de una reacción de "química click” formando un grupo triazol terminal. Estos copolímeros se obtuvieron con rendimientos mayores al 90%. Las nanopartículas de ferritas de hafnio (Hf0.4Fe2.6O4) se prepararon por coprecipitación química inversa en NH4OH a partir de una solución acuosa de FeCl3-6H2O, FeCl2-4H2O y HfCl4. Posterior a ello se preparó un compósito de MPEG/PEG-b-PNIPAM-NPs mediante la mezcla física de las nanopartículas magnéticas de ferrita de hafnio (Hf0.4Fe2.6O4) y el el copolímero de bloque anfifílico MPEG/PEG-b-PNIPAM. Ambos materiales mostraron un comportamiento superparamagnético. Los copolímeros de MPEG/PEG-b-PNIPAM presentaron una temperatura de solución más baja (LCST) en el rango de 34-38 °C, que los hace ideales para su uso en aplicaciones biomédicas. Además, estos copolímeros mostraron que pueden cargar curcumina y liberarla después a una temperatura de 40 °C.
Maestría en tecnología de polímeros BIOLOGÍA Y QUÍMICA QUÍMICA QUÍMICA
Katia Dafne Daniela Martínez López (2022, [Tesis de maestría])
1. RESUMEN Se reporta el desarrollo de materiales porosos por 3D a base de mezclas de PLA/PHB e híbridos de hidroxiapatita-Ag-ZnO (HAp-Ag-ZnO), dirigidos hacia su aplicación como andamios óseos. Primero, se desarrolló un procedimiento novedoso para síntesis in situ de nanopartículas de Ag (Ag-NPs) y ZnO (ZnO-NPs) sobre HAp; En esta etapa del proyecto se evaluaron diferentes proporciones de los precursores Ag-ZnO/HAp a fin de controlar la morfología, distribución y relación entre las Ag-NPs, ZnO-NPs y la HAp. Las propiedades cristalográficas y morfológicas se caracterizaron por difracción de rayos X (DRX) y microscopía electrónica de transmisión (TEM). Las interacciones químicas entre los componentes de los nanohíbridos de HAp-Ag-ZnO se estudiaron mediante espectroscopía de fotoelectrones emitidos por rayos X (XPS). Se formularon en fundido mezclas de PLA/PHB (75:25 m/m) y nanohíbridos de HAp-Ag-ZnO (1% m/m con respecto a la mezcla PLA/PHB), y se manufacturaron filamentos de 1.75 mm de diámetro, aptos para su uso en impresión 3D. Adicionalmente se obtuvieron filamentos de PLA/PHB y de PLA/PHB e HAp (1 % m/m), para fines comparativos. Se evaluaron las propiedades mecánicas de especímenes obtenidos por impresión 3D, ante cargas de compresión a fin de determinar el efecto de la incorporación de los nanohíbridos de HAp-Ag-ZnO. Finalmente, se manufacturaron prototipos porotos por impresión 3D y se evaluó su capacidad de inhibición bacteriana contra E. coli y S. aureus. Estos prototipos se sometieron a un tratamiento superficial con plasma de argón, a fin de exponer las nanopartículas híbridas. La síntesis in situ desarrollada en marco de esta tesis dio lugar a material híbrido constituido por HAp (tamaño promedio de ~40 nm) con Ag-NPs y ZnO-NPs depositadas aleatoriamente. Las Ag-NPs exhibieron una estructura cúbica centrada en las caras mientras que las ZnO-NPs estuvo presente en su fase Wurtzita. El análisis cristalográfico y por XPS sugiere que existe un dopado con átomos de Zn y Ag en la estructura de la HAp. Las propiedades mecánicas a compresión de la mezcla PLA/PHB no sufrieron disminución con la incorporación de los nanohíbridos de HAp- Ag-ZnO.
El módulo elástico alcanzado en los materiales porosos coincide con el del hueso trabecular/esponjoso, lo cual es deseable para su uso en andamios óseos. Se obtuvo una inhibición antibacteriana del 90% para E. Coli y 30% para S. aureus, la cual incrementó en ambos casos hasta un 100 % después del tratamiento con plasma de argón. Los resultados indican que los materiales desarrollados en este trabajo tienen un gran potencial para la ingeniería de tejidos óseos.
Maestría en tecnología de polímeros BIOLOGÍA Y QUÍMICA QUÍMICA QUÍMICA
Edgar Miguel García Carrillo (2022, [Otro, Trabajo de grado, doctorado])
En el diseño de compuestos poliméricos, es de gran interés poder predecir y optimizar sus propiedades térmicas, eléctricas y mecánicas, antes de su fabricación, con el fin de reducir el trabajo experimental y de obtener materiales con mejor desempeño para diversas aplicaciones. Sin embargo, esta tarea es complicada debido al comportamiento complejo y no lineal de las propiedades de los compuestos. En este trabajo se desarrollaron redes neuronales artificiales (RNA) como modelos de predicción con el objetivo de aproximar la conductividad térmica, la conductividad eléctrica y las propiedades de tensión de compuestos de polietileno de alta densidad (HDPE) adicionados con partículas de carbono (PC). En la implementación de estos modelos se utilizaron datos obtenidos experimentalmente. Los compuestos fueron preparados mediante mezclado en fundido, utilizando cuatro tipos de partículas de carbono de distinta geometría a diferentes concentraciones. Las RNA de tipo perceptrón multicapa (MLP), entrenadas mediante el algoritmo Levenberg-Marquardt y con una sola capa oculta mostraron el mejor desempeño predictivo. Los modelos de RNA mostraron una buena correlación entre los datos experimentales y simulados, lo cual está evidenciado por factores de correlaciones superiores a 0.97 en los datos de prueba. Además, los modelos de predicción de la conductividad térmica y del módulo elástico basados en RNA se ajustaron en mayor medida a los datos experimentales en comparación con modelos analíticos reportados en la literatura. También, se determinó el impacto relativo de cada variable de entrada sobre las propiedades de los compuestos, a través del tratamiento de los pesos sinápticos de las RNA mediante el método connection weight. Las ecuaciones derivadas de las RNA se utilizaron como funciones de ajuste de un algoritmo genético multi- objetivo (MOGA) con el fin de optimizar los parámetros de diseño que permiten maximizar la conductividad térmica y el módulo elástico, así como minimizar la conductividad eléctrica de los compuestos. Como resultado de la optimización, se obtuvo un conjunto de soluciones óptimas que pertenecen a la frontera de Pareto. Una prueba de conformidad se llevó a cabo para validar la capacidad de optimización del método de algoritmos genéticos.
Finalmente, este modelo podría ser adaptado para su aplicación en otras propiedades de compuestos, así como en un intervalo de variables extendido.
Doctorado en tecnología de polímeros BIOLOGÍA Y QUÍMICA QUÍMICA QUÍMICA
VICTOR DANIEL LECHUGA ISLAS (2022, [Otro, Trabajo de grado, doctorado])
This thesis was conducted at the Centro de Investigación en Química Aplicada (CIQA, Mexico), and the Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena (FSUJ, Germany), both institutions are gratefully acknowledged.
This project would not have been possible without the support of many people. I am foremost grateful to my supervisors: Dr. Carlos Guerrero Sánchez for his outstanding ideas, guides, help, and prolific supervision during this project, and Dr. Ramiro Guerrero Santos for his constructive comments and vision to strive toward excellent research. I had a great time during this project. Thank you for all the confidence you entrusted me with.
I also would like to acknowledge the Department of Macromolecular Chemistry and Nanomaterials at CIQA, a special thanks to M.S. Hortensia Maldonado T., and B.S. Judith Cabello R., for their helpful assistance during the beginning of this project. Thanks also to the people who helped me with all the administration work at the Coordinación de Posgrado at CIQA, including Dr. Leticia Larios, M.S. Aída E. García, and Nancy Espinosa.
I thank Prof. Dr. Ulrich S. Schubert and his group for giving me the opportunity to do part of my PhD thesis at the Friedrich Schiller University Jena (FSUJ), Germany. It was a special pleasure for me to work and collaborate in the group.
I am also grateful to my committee: Dr. Dámaso Navarro, Dr. Ramón Díaz, and Dr. Ricardo Acosta for fruitful discussions, valuable suggestions, and expert advice to enrich this work. I hope I have learned and applied several of your teachings here and in future projects.
Moreover, I am also grateful to the always supportive staff at CIQA and FSUJ. Special thanks to Dr. Jesus Lara and Steffi Stumpf for their assistance with SEM analysis, Carolin Kellner for cytotoxicity studies, Renzo Paulus for his assistance with thermal
studies, Sandra Köhn for EA measurements, Katja Gattung and Ulrike Kaiser for all the paperwork in Jena, Dr. Grit Festag for SEC measurements, Dr. Johannes C. Brendel, Dr. Ivo Nischang for AUC measurements and great collaboration, and Dr. Jürgen Vitz for his kind support during my stay in Jena.
For the good times and collaboration, I also wish to thank my colleagues and friends at CIQA and FSUJ. A special thanks to Alicia de San Luis, Carolina Ventura, César Muñoz, Claude St. Thomas, Ilya Anufriev, Jens Ulbrich, Julien Alex, Luana Vieira, Marco De Jesus, Miguel Carrillo, Roberto Yañez, Paulina Lugo, Paul Klemm and to all who directly or indirectly have lent their hand in this venture. Thank you, muchas gracias, danke schön!
I am especially grateful to my family for providing me with unfailing support and continuous help throughout my years of study. This accomplishment would not have been possible without them. I wish to express my deepest gratitude to Melisa Trejo, her love, dedication, and encouragement have sustained and uplifted me to continue with this and our wonderful life project. Thank you!
And of course, I wish to express my gratitude for financial support to the Consejo Nacional de Ciencia y Tecnología (CONACYT) and the Deutscher Akademischer Austauschdienst (DAAD) through the research grant: Bi-nationally supervised Doctoral Degrees / Cotutelle.
Doctorado en tecnología de polímeros BIOLOGÍA Y QUÍMICA QUÍMICA QUÍMICA