Título
A Comparison of Multi-Label Text Classification Models in Research Articles Labeled With Sustainable Development Goals
Autor
Roberto Carlos Morales-Hernández
Joaquín Gutiérrez Jaguey
David Becerra-Alonso
Nivel de Acceso
Acceso Abierto
Referencia de publicación
doi: DOI: 10.1109/ACCESS.2022.3223094
URL/URL: https://ieeexplore.ieee.org/document/9954368
ISSN/ISSN: 21693536
Materias
Classification algorithm, multi-label text classification, problem transformation method, scientific articles, sustainable development goals, text classification - (AUTOR) INGENIERÍA Y TECNOLOGÍA - (CTI) CIENCIAS TECNOLÓGICAS - (CTI) TECNOLOGÍA DE LOS ORDENADORES - (CTI) LENGUAJES ALGORÍTMICOS - (CTI) LENGUAJES ALGORÍTMICOS - (CTI)
Resumen o descripción
"The classification of scientific articles aligned to Sustainable Development Goals is crucial for research institutions and universities when assessing their influence in these areas. Machine learning enables the implementation of massive text data classification tasks. The objective of this study is to apply Natural Language Processing techniques to articles from peer-reviewed journals to facilitate their classification according to the 17 Sustainable Development Goals of the 2030 Agenda. This article compares the performance of multi-label text classification models based on a proposed framework with datasets of different characteristics. The results show that the combination of Label Powerset (a transformation method) with Support Vector Machine (a classification algorithm) can achieve an accuracy of up to 87% for an imbalanced dataset, 83% for a dataset with the same number of instances per label, and even 91% for a multiclass dataset."
Editor
Institute of Electrical and Electronics Engineers Inc.
Fecha de publicación
2022
Tipo de publicación
Artículo
Versión de la publicación
Versión publicada
Recurso de información
Formato
application/pdf
Fuente
IEEE Access
Idioma
Inglés
Sugerencia de citación
R. C. Morales-Hernández, J. G. Jagüey and D. Becerra-Alonso, "A Comparison of Multi-Label Text Classification Models in Research Articles Labeled With Sustainable Development Goals," in IEEE Access, vol. 10, pp. 123534-123548, 2022, doi: 10.1109/ACCESS.2022.3223094.
Repositorio Orígen
Repositorio Institucional CIBNOR
Descargas
12