Búsqueda avanzada


Área de conocimiento




141 resultados, página 1 de 10

Bacterial communities in the rhizosphere at different growth stages of maize cultivated in soil under conventional and conservation agricultural practices

Yendi Navarro-Noya Bram Govaerts Nele Verhulst Luc Dendooven (2022, [Artículo])

Farmers in Mexico till soil intensively, remove crop residues for fodder and grow maize often in monoculture. Conservation agriculture (CA), including minimal tillage, crop residue retention and crop diversification, is proposed as a more sustainable alternative. In this study, we determined the effect of agricultural practices and the developing maize rhizosphere on soil bacterial communities. Bulk and maize (Zea mays L.) rhizosphere soil under conventional practices (CP) and CA were sampled during the vegetative, flowering and grain filling stage, and 16S rRNA metabarcoding was used to assess bacterial diversity and community structure. The functional diversity was inferred from the bacterial taxa using PICRUSt. Conservation agriculture positively affected taxonomic and functional diversity compared to CP. The agricultural practice was the most important factor in defining the structure of bacterial communities, even more so than rhizosphere and plant growth stage. The rhizosphere enriched fast growing copiotrophic bacteria, such as Rhizobiales, Sphingomonadales, Xanthomonadales, and Burkholderiales, while in the bulk soil of CP other copiotrophs were enriched, e.g., Halomonas and Bacillus. The bacterial community in the maize bulk soil resembled each other more than in the rhizosphere of CA and CP. The bacterial community structure, and taxonomic and functional diversity in the maize rhizosphere changed with maize development and the differences between the bulk soil and the rhizosphere were more accentuated when the plant aged. Although agricultural practices did not alter the effect of the rhizosphere on the soil bacterial communities in the flowering and grain filling stage, they did in the vegetative stage.

Community Assembly Functional Diversity Intensive Agricultural Practices Plant Microbiome CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SUSTAINABLE AGRICULTURE TILLAGE SOIL BACTERIA MAIZE

Diseño de un sistema de ventilación forzada para un invernadero cenital usando CFD

Design of a forced ventilation system for a Zenithal greenhouse using CFD

JORGE FLORES VELAZQUEZ FEDERICO VILLARREAL GUERRERO (2014, [Artículo])

El crecimiento de los cultivos bajo invernadero en México, se ha visto frenado por factores relacionados con el control del clima. El clima producido dentro del invernadero es en gran medida una consecuencia de las condiciones ambientales del lugar donde se localiza el invernadero y del diseño del mismo; así como de la configuración y operación de los sistemas de control como el sistema de ventilación. El análisis del efecto del sistema de ventilación sobre el comportamiento del clima es fundamental para optimizar su manejo. La dinámica de fluidos computacional (CFD) es una técnica numérica que permite analizar el comportamiento del clima del invernadero bajo diferentes escenarios. Esta técnica fue utilizada para modelar el clima de un invernadero cenital de tres capillas. Los resultados indican que la ventana de entrada de aire plana, produce una velocidad media del aire de 0.81±0.69 m s-1, temperatura media de 297.97±1.17 K, temperatura máxima de 303.62 K, un gradiente térmico de 8.67 K, y mostró limitantes en la renovación del aire principalmente en la parte inferior inmediata a la ventana de entrada.

Vegetales Invernaderos Velocidad del viento INGENIERÍA Y TECNOLOGÍA

Influence of conservation agriculture-based production systems on bacterial diversity and soil quality in rice-wheat-greengram cropping system in eastern Indo-Gangetic Plains of India

Anup Das virender kumar Peter Craufurd Andrew Mcdonald Sonam Sherpa (2023, [Artículo])

Introduction: Conservation agriculture (CA) is gaining attention in the South Asia as an environmentally benign and sustainable food production system. The knowledge of the soil bacterial community composition along with other soil properties is essential for evaluating the CA-based management practices for achieving the soil environment sustainability and climate resilience in the rice-wheat-greengram system. The long-term effects of CA-based tillage-cum-crop establishment (TCE) methods on earthworm population, soil parameters as well as microbial diversity have not been well studied. Methods: Seven treatments (or scenarios) were laid down with the various tillage (wet, dry, or zero-tillage), establishment method (direct-or drill-seeding or transplantation) and residue management practices (mixed with the soil or kept on the soil surface). The soil samples were collected after 7 years of experimentation and analyzed for the soil quality and bacterial diversity to examine the effect of tillage-cum-crop establishment methods. Results and Discussion: Earthworm population (3.6 times), soil organic carbon (11.94%), macro (NPK) (14.50–23.57%) and micronutrients (Mn, and Cu) (13.25 and 29.57%) contents were appreciably higher under CA-based TCE methods than tillage-intensive farming practices. Significantly higher number of OTUs (1,192 ± 50) and Chao1 (1415.65 ± 14.34) values were observed in partial CA-based production system (p ≤ 0.05). Forty-two (42) bacterial phyla were identified across the scenarios, and Proteobacteria, Actinobacteria, and Firmicutes were the most dominant in all the scenarios. The CA-based scenarios harbor a high abundance of Proteobacteria (2–13%), whereas the conventional tillage-based scenarios were dominated by the bacterial phyla Acidobacteria and Chloroflexi and found statistically differed among the scenarios (p ≤ 0.05). Composition of the major phyla, i.e., Proteobacteria, Actinobacteria, and Firmicutes were associated differently with either CA or farmers-based tillage management practices. Overall, the present study indicates the importance of CA-based tillage-cum-crop establishment methods in shaping the bacterial diversity, earthworms population, soil organic carbon, and plant nutrient availability, which are crucial for sustainable agricultural production and resilience in agro-ecosystem.

Metagenomics Bacterial Diversity Rice-Wheat-Greengram CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CONSERVATION AGRICULTURE DNA SEQUENCES EARTHWORMS METAGENOMICS SOIL QUALITY AGROECOSYSTEMS

Climate-smart agricultural practices influence the fungal communities and soil properties under major agri-food systems

madhu choudhary ML JAT Parbodh Chander Sharma (2022, [Artículo])

Fungal communities in agricultural soils are assumed to be affected by climate, weather, and anthropogenic activities, and magnitude of their effect depends on the agricultural activities. Therefore, a study was conducted to investigate the impact of the portfolio of management practices on fungal communities and soil physical–chemical properties. The study comprised different climate-smart agriculture (CSA)-based management scenarios (Sc) established on the principles of conservation agriculture (CA), namely, ScI is conventional tillage-based rice–wheat rotation, ScII is partial CA-based rice–wheat–mungbean, ScIII is partial CSA-based rice–wheat–mungbean, ScIV is partial CSA-based maize–wheat–mungbean, and ScV and ScVI are CSA-based scenarios and similar to ScIII and ScIV, respectively, except for fertigation method. All the scenarios were flood irrigated except the ScV and ScVI where water and nitrogen were given through subsurface drip irrigation. Soils of these scenarios were collected from 0 to 15 cm depth and analyzed by Illumina paired-end sequencing of Internal Transcribed Spacer regions (ITS1 and ITS2) for the study of fungal community composition. Analysis of 5 million processed sequences showed a higher Shannon diversity index of 1.47 times and a Simpson index of 1.12 times in maize-based CSA scenarios (ScIV and ScVI) compared with rice-based CSA scenarios (ScIII and ScV). Seven phyla were present in all the scenarios, where Ascomycota was the most abundant phyla and it was followed by Basidiomycota and Zygomycota. Ascomycota was found more abundant in rice-based CSA scenarios as compared to maize-based CSA scenarios. Soil organic carbon and nitrogen were found to be 1.62 and 1.25 times higher in CSA scenarios compared with other scenarios. Bulk density was found highest in farmers' practice (Sc1); however, mean weight diameter and water-stable aggregates were found lowest in ScI. Soil physical, chemical, and biological properties were found better under CSA-based practices, which also increased the wheat grain yield by 12.5% and system yield by 18.8%. These results indicate that bundling/layering of smart agricultural practices over farmers' practices has tremendous effects on soil properties, and hence play an important role in sustaining soil quality/health.

Agriculture Management Fungal Community Diversity Indices Climate-Smart Agricultural Practices CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE TILLAGE CLIMATE-SMART AGRICULTURE SOIL ORGANIC CARBON