Búsqueda avanzada


Área de conocimiento




Filtrar por:

Tipo de publicación

Autores

Años de Publicación

Editores

Repositorios Orígen

Tipos de Acceso

Idiomas

Materias

Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales

30 resultados, página 1 de 3

Does access to improved grain storage technology increase farmers' welfare? Experimental evidence from maize farming in Ethiopia

Hugo De Groote Bart Minten (2024, [Artículo])

Seasonal price variability for cereals is two to three times higher in Africa than on the international reference market. Seasonality is even more pronounced when access to appropriate storage and opportunities for price arbitrage are limited. As smallholder farmers typically sell their production after harvest, when prices are low, this leads to lower incomes as well as higher food insecurity during the lean season, when prices are high. One solution to reduce seasonal stress is the use of improved storage technologies. Using data from a randomised controlled trial, in a major maize-growing region of Western Ethiopia, we study the impact of hermetic bags, a technology that protects stored grain against insect pests, so that the grain can be stored longer. Despite considerable price seasonality—maize prices in the lean season are 36% higher than after harvesting—we find no evidence that hermetic bags improve welfare, except that access to these bags allowed for a marginally longer storage period of maize intended for sale by 2 weeks. But this did not translate into measurable welfare gains as we found no changes in any of our welfare outcome indicators. This ‘near-null’ effect is due to the fact that maize storage losses in our study region are relatively lower than previous studies suggested—around 10% of the quantity stored—likely because of the widespread use of an alternative to protect maize during storage, for example a cheap but highly toxic fumigant. These findings are important for policies that seek to promote improved storage technologies in these settings.

Hermetic Storage Randomised Controlled Trial CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA STORAGE PILOT FARMS SEASONALITY WELFARE MAIZE

Appraisal of complementarity of subsurface drip fertigation and conservation agriculture for physiological performance and water economy of maize

C.M. Parihar Hari Sankar Nayak Dipaka Ranjan Sena Renu Pandey Mahesh Gathala ML JAT (2023, [Artículo])

The Indo-Gangetic Plains (IGP) in north-west (NW) India are facing a severe decline in ground water due to prevalent rice-based cropping systems. To combat this issue, conservation agriculture (CA) with an alternative crop/s, such as maize, is being promoted. Recently, surface drip fertigation has also been evaluated as a viable option to address low-nutrient use efficiency and water scarcity problems for cereals. While the individual benefits of CA and sub-surface drip (SSD) irrigation on water economy are well-established, information regarding their combined effect in cereal-based systems is lacking. Therefore, we conducted a two-year field experiment in maize, under an ongoing CA-based maize-wheat system, to evaluate the complementarity of CA with SSD irrigation through two technological interventions–– CA+ (residue retained CA + SSD), PCA+ (partial CA without residue + SSD) – at different N rates (0, 120 and 150 kg N ha-1) in comparison to traditional furrow irrigated (FI) CA and conventional tillage (CT) at 120 kg N ha-1. Our results showed that CA+ had the highest grain yield (8.2 t ha-1), followed by PCA+ (8.1 t ha-1). The grain yield under CA+ at 150 kg N ha-1 was 27% and 30% higher than CA and CT, respectively. Even at the same N level (120 kg N ha-1), CA+ outperformed CA and CT by 16% and 18%, respectively. The physiological performance of maize also revealed that CA+ based plots with 120 kg N ha-1 had 12% and 3% higher photosynthesis rate at knee-high and silking, respectively compared to FI-CA and CT. Overall, compared to the FI-CA and CT, SSD-based CA+ and PCA+ saved 54% irrigation water and increased water productivity (WP) by more than twice. Similarly, a greater number of split N application through fertigation in PCA+ and CA+ increased agronomic nitrogen use efficiency (NUE) and recover efficiency by 8–19% and 14–25%, respectively. Net returns from PCA+ and CA+ at 150 kg N ha-1 were significantly higher by US$ 491 and 456, respectively than the FI-CA and CT treatments. Therefore, CA coupled with SSD provided tangible benefits in terms of yield, irrigation water saving, WP, NUE and profitability. Efforts should be directed towards increasing farmers’ awareness of the benefits of such promising technology for the cultivating food grains and commercial crops such as maize. Concurrently, government support and strict policies are required to enhance the system adaptability.

Net Returns Subsurface Drip Irrigation Subsurface Drip Fertigation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA EFFICIENCY GRAIN NITROGEN PHOTOSYNTHESIS PHYSIOLOGY WATER SUPPLY CONSERVATION AGRICULTURE CONVENTIONAL TILLAGE FERTIGATION GROUNDWATER NITROGEN-USE EFFICIENCY WATER PRODUCTIVITY