Filters
Filter by:
Publication type
- Article (88)
- Conference object (21)
- Book part (3)
- Master thesis (3)
- Book (1)
Authors
- sridhar bhavani (10)
- Govindan Velu (7)
- Alison Bentley (6)
- Ravi Singh (6)
- JULIO HUERTA_ESPINO (5)
Issue Years
Publishers
- CICESE (2)
- El autor (1)
- Frontiers Media, S. A. (1)
Origin repository
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (112)
- Repositorio Institucional CICESE (2)
- Repositorio Institucional CIBNOR (1)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (1)
Access Level
- oa:openAccess (116)
Language
Subject
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (112)
- WHEAT (85)
- DISEASE RESISTANCE (16)
- RUSTS (15)
- BREEDING (13)
Select the topics of your interest and receive the hottest publications in your email
Accumulation of wheat phenolic acids under different nitrogen rates and growing environments
Wenfei Tian Yong Zhang Zhonghu He (2022)
Article
Functional Wheat Trans-Ferulic Acid Nitrogen Management Environment Interaction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT PHENOLIC ACIDS NITROGEN ENVIRONMENT ANTIOXIDANTS
Yendi Navarro-Noya Bram Govaerts Nele Verhulst Luc Dendooven (2022)
Farmers in Mexico till soil intensively, remove crop residues for fodder and grow maize often in monoculture. Conservation agriculture (CA), including minimal tillage, crop residue retention and crop diversification, is proposed as a more sustainable alternative. In this study, we determined the effect of agricultural practices and the developing maize rhizosphere on soil bacterial communities. Bulk and maize (Zea mays L.) rhizosphere soil under conventional practices (CP) and CA were sampled during the vegetative, flowering and grain filling stage, and 16S rRNA metabarcoding was used to assess bacterial diversity and community structure. The functional diversity was inferred from the bacterial taxa using PICRUSt. Conservation agriculture positively affected taxonomic and functional diversity compared to CP. The agricultural practice was the most important factor in defining the structure of bacterial communities, even more so than rhizosphere and plant growth stage. The rhizosphere enriched fast growing copiotrophic bacteria, such as Rhizobiales, Sphingomonadales, Xanthomonadales, and Burkholderiales, while in the bulk soil of CP other copiotrophs were enriched, e.g., Halomonas and Bacillus. The bacterial community in the maize bulk soil resembled each other more than in the rhizosphere of CA and CP. The bacterial community structure, and taxonomic and functional diversity in the maize rhizosphere changed with maize development and the differences between the bulk soil and the rhizosphere were more accentuated when the plant aged. Although agricultural practices did not alter the effect of the rhizosphere on the soil bacterial communities in the flowering and grain filling stage, they did in the vegetative stage.
Article
Community Assembly Functional Diversity Intensive Agricultural Practices Plant Microbiome CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SUSTAINABLE AGRICULTURE TILLAGE SOIL BACTERIA MAIZE
Vijay Gahlaut Vandana Jaiswal Pushpendra Kumar Gupta (2019)
Article
Genome-Wide Association Study Marker-Trait Associations CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENETIC LINKAGE GENETICS PROCEDURES QUANTITATIVE TRAIT LOCI WHEAT CHROMOSOME MAPPING
suneel kumar UTTAM KUMAR Guriqbal Singh Dhillon Amit Singh Vinod Mishra Pradeep Kumar Bhati Saikat Das Ramesh Chand Kuldeep Singh Sundeep Kumar (2022)
Article
Spot Blotch Genome-Wide Association Study Marker Trait Association KASP Markers Kompetitive Allele Specific PCR CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TRITICUM AESTIVUM MATERIAL TRANSFER AGREEMENTS MARKER-ASSISTED SELECTION DISEASE RESISTANCE WHEAT
Ravi Singh Mandeep Randhawa sridhar bhavani UTTAM KUMAR JULIO HUERTA_ESPINO Evans Lagudah CAIXIA LAN (2022)
Article
Co-Located Resistance Loci Puccinia triticina CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RUSTS PUCCINIA STRIIFORMIS QUANTITATIVE TRAIT LOCI ADULT PLANT RESISTANCE WHEAT
Nick Fradgley Alison Bentley Keith Gardner Stéphanie M. Swarbreck (2023)
Article
Sustainable Food Systems Genomic Prediction Genome-Wide Association Analysis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT BREEDING MARKER-ASSISTED SELECTION VARIETIES FOOD SYSTEMS QUALITY
Gender analysis of household seed security : A case of maize and wheat seed systems in Nepal
Hom Nath Gartaula (2022)
Book
Seed Security Mountains CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SEED SYSTEMS MAIZE WHEAT ROLE OF WOMEN WOMEN'S PARTICIPATION
Tilahun Amede Elizabeth Bailey Abdul Wahab Mossa Dereje Tirfessa MESFIN KEBEDE DESTA Getachew Agegnehu Tesfaye Shiferaw Sida Stephan Haefele R. Murray Lark Martin Broadley Samuel Gameda (2023)
Agronomic biofortification, encompassing the use of mineral and organic nutrient resources which improve micronutrient concentrations in staple crops is a potential strategy to promote the production of and access to micronutrient-dense foods at the farm level. However, the heterogeneity of smallholder farming landscapes presents challenges on implementing agronomic biofortification. Here, we test the effects of zinc (Zn)- and selenium (Se)-containing fertilizer on micronutrient concentrations of wheat (Triticum aestivum L.) and teff (Eragrostis tef (Zucc.) Trotter) grown under different landscape positions and with different micronutrient fertilizer application methods in the western Amhara region of Ethiopia. Field experiments were established in three landscape positions at three sites, with five treatments falling into three broad categories: (1) nitrogen (N) fertilizer rate; (2) micronutrient fertilizer application method; (3) sole or co-application of Zn and Se fertilizer. Treatments were replicated across five farms per landscape position and over two cropping seasons (2018 and 2019). Grain Zn concentration ranged from 26.6 to 36.4 mg kg−1 in wheat and 28.5–31.2 mg kg−1 in teff. Grain Se concentration ranged from 0.02 to 0.59 mg kg−1 in wheat while larger concentrations of between 1.01 and 1.55 mg kg−1 were attained in teff. Larger concentrations of Zn and Se were consistently attained when a foliar fertilizer was applied. Application of ⅓ nitrogen (N) yielded significantly larger grain Se concentration in wheat compared to a recommended N application rate. A moderate landscape effect on grain Zn concentration was observed in wheat but not in teff. In contrast, strong evidence of a landscape effect was observed for wheat and teff grain Se concentration. There was no evidence for any interaction of the treatment contrasts with landscape position except in teff, where an interaction effect between landscape position and Se application was observed. Our findings indicate an effect of Zn, Se, N, landscape position, and its interaction effect with Se on grain micronutrient concentrations. Agronomic biofortification of wheat and teff with micronutrient fertilizers is influenced by landscape position, the micronutrient fertilizer application method and N fertilizer management. The complexity of smallholder environmental settings and different farmer socio-economic opportunities calls for the optimization of nutritional agronomy landscape trials. Targeted application of micronutrient fertilizers across a landscape gradient is therefore required in ongoing agronomic biofortification interventions, in addition to the micronutrient fertilizer application method and the N fertilizer management strategy.
Article
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOFORTIFICATION LANDSCAPE SELENIUM ZINC WHEAT
Sudhir Navathe Ramesh Chand Mir Asif Iquebal Govindan Velu arun joshi (2022)
Article
Resistance Terminal Heat CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIPOLARIS SOROKINIANA HEAT STRESS WHEAT RESISTANCE VARIETIES