Búsqueda avanzada


Área de conocimiento




86 resultados, página 1 de 9

Mapping crop and livestock value chain actors in Mbire and Murehwa districts in Zimbabwe

Hambulo Ngoma Moti Jaleta Frédéric Baudron (2023, [Documento de trabajo])

We conducted a preliminary value chain actors mapping for major crops grown and livestock kept by smallholder farmers in Mbire and Murehwa districts of Zimbabwe. Accordingly, in this report we mapped value chain actors for 11 crops and livestock commodities: namely, sorghum, cotton, sesame, maize, groundnut, sweet-potato, vegetables (tomato and onion), cattle, goats, poultry, and honey/beekeeping. Except sesame from Mbire, most of the crop and livestock commodities are channeled to the main markets in Harare and Marondera for Murehwa. Sesame is smuggled to Mozambique and the market is mainly dependent on middlemen. The Grain Market Board (GMB) is the major actor in sorghum and maize marketing in both districts. Groundnut is sold to both rural and urban consumers after processing it to peanut butter locally within the production zones. Goats and cattle are mostly supplied to the Harare market by middlemen collecting these livestock from village markets and moving door-to-door to buy enough quantity to transport to Harare. Honey production and marketing is still at its initial stage through the support of HELP from Germany and the Zimbabwe Apiculture Trust projects. Long dry season is a challenge in honey production. The Pfumvudza program supported by the Presidential free input scheme helped in introducing and scaling conservation agriculture practices in Zimbabwe. Though there is strong integration of crop-livestock systems at both districts, the level of manure use is gradually decreasing because farmers receive chemical fertilizer support from the Pfumvudza program and applying manure to crop fields is labor-intensive. The input supply system is more competitive in Murehwa district where there are quite several input suppliers in town. The possible interventions that favor agroecological transitions are: (1) honey processing plants and supply of beehives to potential areas, (2) encouraging manure use in crop production, possibly linking it to the basins preparation requirement to be eligible for the presidential input subsidy scheme, (3) support the organic vegetable production initiatives and explore market segments in Harare paying premium prices for certified organic products, (4) Expedite payment systems in sorghum and maize marketing with GMB, and (5) sesame production with agroecologically friendly agronomy and improve markets.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA VALUE CHAINS CROPS LIVESTOCK SMALLHOLDERS SUPPLY CHAINS

Expanding the WOFOST crop model to explore options for sustainable nitrogen management: A study for winter wheat in the Netherlands

João Vasco Silva Pytrik Reidsma (2024, [Artículo])

Nitrogen (N) management is essential to ensure crop growth and to balance production, economic, and environmental objectives from farm to regional levels. This study aimed to extend the WOFOST crop model with N limited production and use the model to explore options for sustainable N management for winter wheat in the Netherlands. The extensions consisted of the simulation of crop and soil N processes, stress responses to N deficiencies, and the maximum gross CO2 assimilation rate being computed from the leaf N concentration. A new soil N module, abbreviated as SNOMIN (Soil Nitrogen for Organic and Mineral Nitrogen module) was developed. The model was calibrated and evaluated against field data. The model reproduced the measured grain dry matter in all treatments in both the calibration and evaluation data sets with a RMSE of 1.2 Mg ha−1 and the measured aboveground N uptake with a RMSE of 39 kg N ha−1. Subsequently, the model was applied in a scenario analysis exploring different pathways for sustainable N use on farmers' wheat fields in the Netherlands. Farmers' reported yield and N fertilization management practices were obtained for 141 fields in Flevoland between 2015 and 2017, representing the baseline. Actual N input and N output (amount of N in grains at harvest) were estimated for each field from these data. Water and N-limited yields and N outputs were simulated for these fields to estimate the maximum attainable yield and N output under the reported N management. The investigated scenarios included (1) closing efficiency yield gaps, (2) adjusting N input to the minimum level possible without incurring yield losses, and (3) achieving 90% of the simulated water-limited yield. Scenarios 2 and 3 were devised to allow for soil N mining (2a and 3a) and to not allow for soil N mining (2b and 3b). The results of the scenario analysis show that the largest N surplus reductions without soil N mining, relative to the baseline, can be obtained in scenario 1, with an average of 75%. Accepting negative N surpluses (while maintaining yield) would allow maximum N input reductions of 84 kg N ha−1 (39%) on average (scenario 2a). However, the adjustment in N input for these pathways, and the resulting N surplus, varied strongly across fields, with some fields requiring greater N input than used by farmers.

Crop Growth Models WOFOST CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROPS NITROGEN-USE EFFICIENCY WINTER WHEAT SOIL WATER

Innovative approaches to integrating gender into conventional maize breeding: lessons from the Seed Production Technology for Africa project

Rachel Voss Jill Cairns Michael Olsen Esnath Tatenda Hamadziripi (2023, [Artículo])

The integration of gender concerns in crop breeding programs aims to improve the suitability and appeal of new varieties to both women and men, in response to concerns about unequal adoption of improved seed. However, few conventional breeding programs have sought to center social inclusion concerns. This community case study documents efforts to integrate gender into the maize-focused Seed Production Technology for Africa (SPTA) project using innovation history analysis drawing on project documents and the authors’ experiences. These efforts included deliberate exploration of potential gendered impacts of project technologies and innovations in the project’s approach to variety evaluation, culminating in the use of decentralized on-farm trials using the tricot approach. Through this case study, we illustrate the power of active and respectful collaborations between breeders and social scientists, spurred by donor mandates to address gender and social inclusion. Gender integration in this case was further facilitated by open-minded project leaders and allocation of funding for gender research. SPTA proved to be fertile ground for experimentation and interdisciplinary collaboration around gender and maize breeding, and has provided proof of concept for larger breeding projects seeking to integrate gender considerations.

Crop Breeding On-Farm Trials Tricot CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENDER CROPS BREEDING ON-FARM RESEARCH SOCIAL INCLUSION CITIZEN SCIENCE MAIZE