Filters
Filter by:
Publication type
- Article (23)
- Master thesis (7)
- Artículo (2)
- Doctoral thesis (2)
- Other (2)
Authors
- WALDO OJEDA BUSTAMANTE (4)
- José Luis Hernández-Hernández (3)
- MARIO ALBERTO VAZQUEZ PEÑA (3)
- Mario Hernández Hernández (3)
- RAMON ARTEAGA RAMIREZ (3)
Issue Years
Publishers
- CICESE (5)
- Instituto Mexicano de Tecnología del Agua (4)
- INFOTEC Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación (3)
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. (2)
- Agronomy (1)
Origin repository
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (10)
- Repositorio institucional del IMTA (10)
- Repositorio Institucional CICESE (6)
- Repositorio Institucional de Ciencia Abierta de la Universidad Autónoma de Guerrero (4)
- Repositorio Institucional de INFOTEC (3)
Access Level
- oa:openAccess (38)
Language
Subject
- INGENIERÍA Y TECNOLOGÍA (20)
- CIENCIAS TECNOLÓGICAS (13)
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (12)
- INTELIGENCIA ARTIFICIAL (6)
- Redes neuronales artificiales (6)
Select the topics of your interest and receive the hottest publications in your email
Razieh Pourdarbani Sajad Sabzi Mario Hernández Hernández José Luis Hernández-Hernández Ginés García_Mateos Davood Kalantari José Miguel Molina Martínez (2019)
Color segmentation is one of the most thoroughly studied problems in agricultural applications of remote image capture systems, since it is the key step in several different tasks, such as crop harvesting, site specific spraying, and targeted disease control under natural light. This paper studies and compares five methods to segment plum fruit images under ambient conditions at 12 different light intensities, and an ensemble method combining them. In these methods, several color features in different color spaces are first extracted for each pixel, and then the most e
ective features are selected using a hybrid approach of artificial neural networks and the cultural algorithm (ANN-CA). The features selected among the 38 defined channels were the b* channel of L*a*b*, and the color purity index, C*, from L*C*h. Next, fruit/background segmentation is performed using five classifiers: artificial neural network-imperialist competitive algorithm (ANN-ICA); hybrid artificial neural network-harmony search (ANN-HS); support vector machines (SVM); k nearest neighbors (kNN); and linear discriminant analysis (LDA). In the ensemble method, the final class for each pixel is determined using the majority voting method. The experiments showed that the correct classification rate for the majority voting method excluding LDA was 98.59%, outperforming the results of the constituent methods.
Article
remote sensing in agriculture artificial neural network hybridization environmental conditions majority voting plum segmentation INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ALIMENTOS
Sajad Sabzi Razieh Pourdarbani Mohammad Hossein Rohban Alejandro Fuentes_Penna José Luis Hernández-Hernández Mario Hernández Hernández (2021)
Improper usage of nitrogen in cucumber cultivation causes nitrate accumulation in the fruit and results in food poisoning in humans; therefore, mandatory evaluation of food products becomes inevitable. Hyperspectral imaging has a very good ability to evaluate the quality of fruits and vegetables in a non-destructive manner. The goal of the present paper was to identify excess nitrogen in cucumber plants. To obtain a reliable result, the majority voting method was used, which takes into account the unanimity of five classifiers, namely, the hybrid artificial neural network¿imperialism competitive algorithm (ANN-ICA), the hybrid artificial neural network¿harmonic search (ANN-HS) algorithm, linear discrimination analysis (LDA), the radial basis function network (RBF), and the Knearest- neighborhood (KNN). The wavelengths of 723, 781, and 901 nm were determined as optimal wavelengths using the hybrid artificial neural network¿biogeography-based optimization (ANNBBO) algorithm, and the performance of classifiers was investigated using the optimal spectrum. The results of a t-test showed that there was no significant difference in the precision of the algorithm when using the optimal wavelengths and wavelengths of the whole range. The correct classification rate of the classifiers ANN-ICA, ANN-HS, LDA, RBF, and KNN were 96.14%, 96.11%, 95.73%, 64.03%, and 95.24%, respectively. The correct classification rate of majority voting (MV) was 95.55% for test data in 200 iterations, which indicates the system was successful in distinguishing nitrogen-rich leaves from leaves with a standard content of nitrogen.
Article
artificial neural network cucumber hyperspectral imaging majority voting nitrogen INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ALIMENTOS
Leah Mungai Joseph Messina Leo Zulu Jiaguo Qi Sieglinde Snapp (2022)
Article
Multilayer Perceptrons CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE LAND USE POPULATION SATELLITE IMAGERY TEXTURE LAND COVER NEURAL NETWORKS REMOTE SENSING
Multi-environment genomic prediction of plant traits using deep learners with dense architecture
Osval Antonio Montesinos-Lopez Jose Crossa (2018)
Article
Shared Data Resources Deep Learning Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ACCURACY GENOMICS NEURAL NETWORKS FORECASTING DATA MARKER-ASSISTED SELECTION
A Novel Technique for Classifying Bird Damage to Rapeseed Plants Based on a Deep Learning Algorithm.
Ali Mirzazadeh Afshin Azizi Yousef Abbaspour_Gilandeh José Luis Hernández-Hernández Mario Hernández Hernández Iván Gallardo Bernal (2021)
Estimation of crop damage plays a vital role in the management of fields in the agricultura sector. An accurate measure of it provides key guidance to support agricultural decision-making systems. The objective of the study was to propose a novel technique for classifying damaged crops based on a state-of-the-art deep learning algorithm. To this end, a dataset of rapeseed field images was gathered from the field after birds¿ attacks. The dataset consisted of three classes including undamaged, partially damaged, and fully damaged crops. Vgg16 and Res-Net50 as pre-trained deep convolutional neural networks were used to classify these classes. The overall classification accuracy reached 93.7% and 98.2% for the Vgg16 and the ResNet50 algorithms, respectively. The results indicated that a deep neural network has a high ability in distinguishing and categorizing different image-based datasets of rapeseed. The findings also revealed a great potential of Deep learning-based models to classify other damaged crops.
Article
rapeseed classification damaged crops deep neural networks INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ALIMENTOS
Kharem Deyanira Omaña Pérez (2023)
Las tecnologías disruptivas como la inteligencia artificial y la robótica, representan un reto para los sistemas tributarios actuales, múltiples líneas de investigación señalan la necesidad de gravar la robótica con la finalidad de compensar el detrimento que ésta genera en la sociedad por el desplazamiento laboral. Este artículo tiene la finalidad de analizar los
elementos necesarios para el desarrollo de un impuesto especial sobre el uso de inteligencia artificial y robótica en México. Es importante mencionar que para desarrollar las ideas que sustentan este estudio se hizo uso de la metodología de investigación documental y analítica, la metodología del derecho comparado, con apoyo del método inductivo y deductivo. Derivado de lo anterior podemos encontrar que nuestro país tiene un contexto histórico, cultural y económico
particular donde es necesario aplicar un impuesto a los robots con la finalidad de situar a México en la economía del conocimiento. Sin embargo, dicha medida genera diversas dificultades jurídicas que serán expuestas para generar certeza sobre la legalidad de establecer el gravamen que se propone. Finalmente, se concluye que este fenómeno
requiere de acciones inmediatas no solo en el ámbito jurídico sino en la implementación de políticas públicas por parte del Estado con el objeto de generar bienestar social en la población y abrazar el fenómeno de las tecnologías como la inteligencia artificial y la robótica.
Other
Master Degree Work
Inteligencia Artificial Robótica Desplazamiento laboral Economía del conocimiento INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS CIENCIAS TECNOLÓGICAS
Difusión de cursos que la Fundación Carlos Slim ofrece en aprende.org
Cesar Petroli (2021)
Conference poster
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TRAINING AGRICULTURAL TRAINING SOCIAL NETWORKS TRAINING COURSES SUSTAINABLE AGRICULTURE
E. African spring wheat breeding pipeline and Network (CIMMYT-KALRO)
sridhar bhavani (2023)
Conference object
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT PLANT BREEDING RESEARCH NETWORKS
Chapter 9. Genome-informed discovery of genes and framework of functional genes in wheat
awais rasheed Rudi Appels (2024)
Book part
Wheat Genomics KASP Markers Gene Discovery Functional Markers Gene Networks CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT GENOMICS SINGLE NUCLEOTIDE POLYMORPHISMS FUNCTIONAL GENOMICS
Tania Carolina Camacho Villa Ernesto Adair Zepeda Villarreal Julio Díaz-José Roberto Rendon-Medel Bram Govaerts (2023)
Article
Social Network Analysis Farm Typologies Social Ties Strong Ties CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA INNOVATION NETWORKS PERSISTENCE SOCIAL NETWORK ANALYSIS MAIZE FARMING SYSTEMS