Filtrar por:
Tipo de publicación
- Artículo (26)
- Artículo (2)
- Tesis de maestría (2)
- Capítulo de libro (1)
- Objeto de congreso (1)
Autores
- Abebe Menkir (2)
- Ana Luisa Garcia-Oliveira (2)
- Carolina Sansaloni (2)
- Cesar Petroli (2)
- Chris Ojiewo (2)
Años de Publicación
Editores
- CICESE (2)
- Universidad Autónoma de Ciudad Juárez (2)
- & (1)
- Atmospheric Research, New Zealand (1)
- Centro de Investigaciones Biológicas del Noroeste, s.c. (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (15)
- Repositorio Institucional CICESE (7)
- Repositorio Institucional CIBNOR (3)
- Repositorio Institucional de la Universidad Autónoma de Ciudad Juárez (2)
- REPOSITORIO INSTITUCIONAL DEL CIO (1)
Tipos de Acceso
- oa:openAccess (31)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (19)
- MAIZE (6)
- OCEANOGRAFÍA (6)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (5)
- BIOLOGÍA ANIMAL (ZOOLOGÍA) (4)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Muhammad Massub Tehseen Fatma Aykut Tonk Ahmed Amri Carolina Sansaloni Ezgi Kurtulus Muhammad Salman Mubarik Kumarse Nazari (2022, [Artículo])
Wheat Landraces Genetic Diversity SNP Markers Analysis of Molecular Variance AMOVA CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BREEDING DISCRIMINANT ANALYSIS GENETIC VARIATION GENETIC DISTANCE GENETIC IMPROVEMENT GENETIC MARKERS HEXAPLOIDY LANDRACES POPULATION STRUCTURE SINGLE NUCLEOTIDE POLYMORPHISM TRITICUM AESTIVUM WHEAT
marwa laribi Sarrah Ben M'barek Carolina Sansaloni Susanne Dreisigacker (2023, [Artículo])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DISEASE RESISTANCE HARD WHEAT GENETIC DIVERSITY GENOME-WIDE ASSOCIATION STUDIES LANDRACES POPULATION STRUCTURE
Susanne Dreisigacker Marta Lopes Miguel Sanchez-Garcia (2023, [Artículo])
Winter Wheat Panel Precision Phenology Effective Markers CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENETIC DIVERSITY (AS RESOURCE) GENOME-WIDE ASSOCIATION STUDIES PHENOLOGY PHOTOPERIODICITY POPULATION STRUCTURE VERNALIZATION WINTER WHEAT
Hussein Shimelis Baloua Nébié Chris Ojiewo Abhishek Rathore (2023, [Artículo])
Heterotic Grouping Breeding Population Development Marker-Assisted Cultivar Development CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA POPULATION STRUCTURE GENE FLOW SINGLE NUCLEOTIDE POLYMORPHISMS SORGHUM BICOLOR BREEDING PROGRAMMES
Leah Mungai Joseph Messina Leo Zulu Jiaguo Qi Sieglinde Snapp (2022, [Artículo])
Multilayer Perceptrons CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE LAND USE POPULATION SATELLITE IMAGERY TEXTURE LAND COVER NEURAL NETWORKS REMOTE SENSING
Thermal and mechanical properties of PLA-based multiscale cellulosic biocomposites
MIGUEL ANGEL RUZ CRUZ Pedro Jesús Herrera Franco Emmanuel Alejandro Flores Johnson MARIA VERONICA MORENO CHULIM LUCIANO MIGUEL GALERA MANZANO Alex Valadez González (2022, [Artículo])
In this work polylactic acid (PLA) based multiscale cellulosic biocomposites were prepared with the aim to evaluate the effect of the incorporation of cellulose nanocrystals (CNCs) on the PLA biocomposites reinforced with cellulose microfibers (MFCs). For this, PLA composite materials reinforced with both MFCs and with a combination of MFCs and CNCs were prepared, while keeping the content of cellulosic reinforcements constant. The thermal and mechanical properties of these multiscale PLA biocomposites were characterized by thermogravimetry (TGA), differential scanning calorimetry (DSC), flexural mechanical and, dynamic mechanical (DMA) tests. Likewise, they were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results show that the replacement of MFCs by CNCs in the 1–5% range appreciably modifies the thermal and mechanical properties of multiscale compounds. For example, they increase the thermal stability of the materials, modify the PLA crystallization process and play the role of adhesion promoters since the mechanical properties in flexure increase in the order of 40% and the storage modulus increases in the order of 35% at room temperature. Also, the addition of CNCs increases the relaxation temperature of the material from 50 to 60 °C, thereby expanding the temperature range for its use. © 2022 The Author(s)
MULTISCALE BIOCOMPOSITES CELLULOSE MICROFIBER CELLULOSE NANOCRYSTALS HIERARCHICAL STRUCTURE PROPERTIES INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE MATERIALES PROPIEDADES DE LOS MATERIALES PROPIEDADES DE LOS MATERIALES
FERNANDO CONTRERAS CATALA (2016, [Artículo])
Effects of geostrophic kinetic energy flux on the three-dimensional distribution of fish larvae of mesopelagic species (Vinciguerria lucetia, Diogenichthys laternatus, Benthosema panamense and Triphoturus mexicanus) in the southern Gulf of California during summer and fall seasons of stronger stratification were analyzed. The greatest larval abundance was found at sampling stations in geostrophic kinetic energy-poor areas (<7.5 J/m3), where the distribution of the dominant species tended to be stratified. Larvae of V. lucetia (average abundance of 318 larvae/10m2) and B. panamense (174 larvae/10m2) were mostly located in and above the pycnocline (typically ∼ 40 m depth). In contrast, larvae of D. laternatus (60 larvae/10m2) were mainly located in and below the pycnocline. On the other hand, in sampling stations from geostrophic kinetic energy-rich areas (> 21 J/m3), where mesoscale eddies were present, the larvae of the dominant species had low abundance and were spread more evenly through the water column, in spite of the water column stratification. For example, in a cyclonic eddy, V. lucetia larvae (34 larvae/10m2) extended their distribution to, at least, the limit of sampling 200 m depth below the pycnocline, while D. laternatus larvae (29 larvae/10m2) were found right up to the surface, both probably as a consequence mixing and secondary circulation in the eddy. Results showed that the level of the geostrophic kinetic energy flux affects the abundance and the three-dimensional distribution of mesopelagic fish larvae during the seasons of stronger stratification, indicating that areas with low geostrophic kinetic energy may be advantageous for feeding and development of mesopelagic fish larvae because of greater water column stability. © 2016 Contreras-Catala et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Article, autumn, Benthosema panamense, Diogenichthys laternatus, environmental factor, environmental parameters, fish, geographic distribution, geostrophic kinetic energy, hydrography, larva, nonhuman, population abundance, population dispersion, pop CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA
RUTH GINGOLD WERMUTH (2013, [Artículo])
Biodiversity has diminished over the past decades with climate change being among the main responsible factors. One consequence of climate change is the increase in sea surface temperature, which, together with long exposure periods in intertidal areas, may exceed the tolerance level of benthic organisms. Benthic communities may suffer structural changes due to the loss of species or functional groups, putting ecological services at risk. In sandy beaches, free-living marine nematodes usually are the most abundant and diverse group of intertidal meiofauna, playing an important role in the benthic food web. While apparently many functionally similar nematode species co-exist temporally and spatially, experimental results on selected bacterivore species suggest no functional overlap, but rather an idiosyncratic contribution to ecosystem functioning. However, we hypothesize that functional redundancy is more likely to observe when taking into account the entire diversity of natural assemblages. We conducted a microcosm experiment with two natural communities to assess their stress response to elevated temperature. The two communities differed in diversity (high [HD] vs. low [LD]) and environmental origin (harsh vs. moderate conditions). We assessed their stress resistance to the experimental treatment in terms of species and diversity changes, and their function in terms of abundance, biomass, and trophic diversity. According to the Insurance Hypothesis, we hypothesized that the HD community would cope better with the stressful treatment due to species functional overlap, whereas the LD community functioning would benefit from species better adapted to harsh conditions. Our results indicate no evidence of functional redundancy in the studied nematofaunal communities. The species loss was more prominent and size specific in the HD; large predators and omnivores were lost, which may have important consequences for the benthic food web. Yet, we found evidence for alternative diversity-ecosystem functioning relationships, such as the Rivets and the Idiosyncrasy Model. © 2013 Gingold et al.
aquaculture, article, bacterivore, benthos, biodiversity, biomass, climate, community dynamics, controlled study, ecosystem, environmental temperature, microcosm, nematode, nonhuman, population abundance, species diversity, species richness, taxonomy CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA
Trophic ecology of Mexican Pacific harbor seal colonies using carbon and nitrogen stable isotopes
MARICELA JUAREZ RODRIGUEZ (2020, [Artículo])
There is limited information that provides a comprehensive understanding of the trophic ecology of Mexican Pacific harbor seal (Phoca vitulina richardii) colonies. While scat analysis has been used to determine the diet of some colonies, the integrative characterization of its feeding habits on broader temporal and spatial scales remains limited. We examined potential feeding grounds, trophic niche width, and overlap, and inferred the degree of dietary specialization using stable carbon and nitrogen isotope ratios (δ13C and δ15N) in this subspecies. We analyzed δ13C and δ15N on fur samples from pups collected at five sites along the western coast of the Baja California Peninsula, Mexico. Fur of natal coat of Pacific harbor seal pups begins to grow during the seventh month in utero until the last stage of gestation. Therefore pup fur is a good proxy for the mother's feeding habits in winter (∼December to March), based on the timing of gestation for the subspecies in this region. Our results indicated that the δ13C and δ15N values differed significantly among sampling sites, with the highest mean δ15N value occurring at the southernmost site, reflecting a well-characterized north to south latitudinal 15N-enrichment in the food web. The tendency identified in δ13C values, in which the northern colonies showed the most enriched values, suggests nearshore and benthic-demersal feeding habits. A low variance in δ13C and δ15N values for each colony (<1‰) and relatively small standard ellipse areas suggest a specialized foraging behavior in adult female Pacific harbor seals in Mexican waters. © 2020 Juárez-Rodríguez et al.
carbon, delta carbon 13, delta nitrogen 15, isotope, nitrogen, unclassified drug, carbon, nitrogen, Article, correlational study, feeding behavior, latitude, Mexico, nonhuman, organism colony, Pinnipedia, population abundance, species richness, troph BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA ANIMAL (ZOOLOGÍA) BIOLOGÍA ANIMAL (ZOOLOGÍA)
Population genetic structure of the maize weevil, Sitophilus zeamais, in southern Mexico
Michael Jones Martha Willcox (2023, [Artículo])
Maize Weevil Genetic Structure CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURAL WORKERS FILTRATION GENE FLOW MAIZE SINGLE NUCLEOTIDE POLYMORPHISM SITOPHILUS ZEAMAIS CURCULIONIDAE