Filtrar por:
Tipo de publicación
- Artículo (19)
- Capítulo de libro (6)
- Tesis de maestría (5)
- Artículo (1)
- Objeto de congreso (1)
Autores
- Alison Bentley (2)
- Olivia Fragoso-Susunaga (2)
- ALFREDO CHAVEZ LUNA (1)
- Abhishek Rathore (1)
- Alma Karla Buyoli Saavedra (1)
Años de Publicación
Editores
- Universidad Autónoma Metropolitana (México). (4)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información. (3)
- CICESE (2)
- Universidad Autónoma de Baja California (2)
- American Institute of Mathematical Sciences (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (12)
- Repositorio Institucional Zaloamati (8)
- Repositorio Institucional CICESE (5)
- CIATEQ Digital (4)
- Repositorio Institucional de INFOTEC (1)
Tipos de Acceso
- oa:openAccess (32)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (13)
- CIENCIAS TECNOLÓGICAS (8)
- INGENIERÍA Y TECNOLOGÍA (8)
- OTRAS (8)
- CIENCIAS DE LAS ARTES Y LAS LETRAS (7)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Kharem Deyanira Omaña Pérez (2023, [Otro, Trabajo de grado, maestría])
Las tecnologías disruptivas como la inteligencia artificial y la robótica, representan un reto para los sistemas tributarios actuales, múltiples líneas de investigación señalan la necesidad de gravar la robótica con la finalidad de compensar el detrimento que ésta genera en la sociedad por el desplazamiento laboral. Este artículo tiene la finalidad de analizar los
elementos necesarios para el desarrollo de un impuesto especial sobre el uso de inteligencia artificial y robótica en México. Es importante mencionar que para desarrollar las ideas que sustentan este estudio se hizo uso de la metodología de investigación documental y analítica, la metodología del derecho comparado, con apoyo del método inductivo y deductivo. Derivado de lo anterior podemos encontrar que nuestro país tiene un contexto histórico, cultural y económico
particular donde es necesario aplicar un impuesto a los robots con la finalidad de situar a México en la economía del conocimiento. Sin embargo, dicha medida genera diversas dificultades jurídicas que serán expuestas para generar certeza sobre la legalidad de establecer el gravamen que se propone. Finalmente, se concluye que este fenómeno
requiere de acciones inmediatas no solo en el ámbito jurídico sino en la implementación de políticas públicas por parte del Estado con el objeto de generar bienestar social en la población y abrazar el fenómeno de las tecnologías como la inteligencia artificial y la robótica.
Inteligencia Artificial Robótica Desplazamiento laboral Economía del conocimiento INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS CIENCIAS TECNOLÓGICAS
deepmala sehgal Laura Dixon Diego Pequeno Jose Crossa Alison Bentley Susanne Dreisigacker (2024, [Capítulo de libro])
Hexaploid Wheat Adaptive Genes Novel Genomic Regions Gene-Based Modeling Process-Based Modeling Global Food Security CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA HEXAPLOIDY WHEAT QUANTITATIVE TRAIT LOCI MODELLING FOOD SECURITY
Sandesh Thapa Darbin Joshi (2022, [Artículo])
Heat Resilient Maize Phenotypic Coefficient of Variation Heritable Traits CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENETIC PARAMETERS MAIZE HYBRIDS
Ayele Badebo Huluka Bekele Abeyo (2023, [Artículo])
Moisture Stress Grain Yield CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOTYPE ENVIRONMENT INTERACTION DROUGHT STRESS STABILITY TRITICUM AESTIVUM LATTICE DESIGN
Patrick Ongom Ana Luisa Garcia-Oliveira Eng Hwa Ng Stefano Lonardi Timothy Close (2024, [Artículo])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SINGLE NUCLEOTIDE POLYMORPHISMS COWPEAS GENOTYPING LINKAGE DISEQUILIBRIUM QUANTITATIVE TRAIT LOCI
João Vasco Silva Frits K. Van Evert Pytrik Reidsma (2023, [Artículo])
Context: Wheat crop growth models from all over the world have been calibrated on the Groot and Verberne (1991) data set, collected between 1982 and 1984 in the Netherlands, in at least 28 published studies to date including various recent ones. However, the recent use of this data set for calibration of potential yield is questionable as actual Dutch winter wheat yields increased by 3.1 Mg ha-1 over the period 1984 – 2015. A new comprehensive set of winter wheat experiments, suitable for crop model calibration, was conducted in Wageningen during the growing seasons of 2013–2014 and of 2014–2015. Objective: The present study aimed to quantify the change of winter wheat variety traits between 1984 and 2015 and to examine which of the identified traits explained the increase in wheat yield most. Methods: PCSE-LINTUL3 was calibrated on the Groot and Verberne data (1991) set. Next, it was evaluated on the 2013–2015 data set. The model was further recalibrated on the 2013–2015 data set. Parameter values of both calibrations were compared. Sensitivity analysis was used to assess to what extent climate change, elevated CO2, changes in sowing dates, and changes in cultivar traits could explain yield increases. Results: The estimated reference light use efficiency and the temperature sum from anthesis to maturity were higher in 2013–2015 than in 1982–1984. PCSE-LINTUL3, calibrated on the 1982–1984 data set, underestimated the yield potential of 2013–2015. Sensitivity analyses showed that about half of the simulated winter wheat yield increase between 1984 and 2015 in the Netherlands was explained by elevated CO2 and climate change. The remaining part was explained by the increased temperature sum from anthesis to maturity and, to a smaller extent, by changes in the reference light use efficiency. Changes in sowing dates, biomass partitioning fractions, thermal requirements for anthesis, and biomass reallocation did not explain the yield increase. Conclusion: Recalibration of PCSE-LINTUL3 was necessary to reproduce the high wheat yields currently obtained in the Netherlands. About half of the reported winter wheat yield increase was attributed to climate change and elevated CO2. The remaining part of the increase was attributed to changes in the temperature sum from anthesis to maturity and, to a lesser extent, the reference light use efficiency. Significance: This study systematically addressed to what extent changes in various cultivar traits, climate change, and elevated CO2 can explain the winter wheat yield increase observed in the Netherlands between 1984 and 2015.
Light Use Efficiency Potential Yield CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP MODELLING LIGHT PHENOLOGY MAXIMUM SUSTAINABLE YIELD TRITICUM AESTIVUM WINTER WHEAT
Vijay Gahlaut Vandana Jaiswal Pushpendra Kumar Gupta (2019, [Artículo])
Genome-Wide Association Study Marker-Trait Associations CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENETIC LINKAGE GENETICS PROCEDURES QUANTITATIVE TRAIT LOCI WHEAT CHROMOSOME MAPPING
Kindie Tesfaye Vakhtang Shelia Pierre C. Sibiry Traore Dawit Solomon Gerrit Hoogenboom (2023, [Artículo])
Seasonal climate variability determines crop productivity in Ethiopia, where rainfed smallholder farming systems dominate in the agriculture production. Under such conditions, a functional and granular spatial yield forecasting system could provide risk management options for farmers and agricultural and policy experts, leading to greater economic and social benefits under highly variable environmental conditions. Yet, there are currently only a few forecasting systems to support early decision making for smallholder agriculture in developing countries such as Ethiopia. To address this challenge, a study was conducted to evaluate a seasonal crop yield forecast methodology implemented in the CCAFS Regional Agricultural Forecasting Toolbox (CRAFT). CRAFT is a software platform that can run pre-installed crop models and use the Climate Predictability Tool (CPT) to produce probabilistic crop yield forecasts with various lead times. Here we present data inputs, model calibration, evaluation, and yield forecast results, as well as limitations and assumptions made during forecasting maize yield. Simulations were conducted on a 0.083° or ∼ 10 km resolution grid using spatially variable soil, weather, maize hybrids, and crop management data as inputs for the Cropping System Model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT). CRAFT combines gridded crop simulations and a multivariate statistical model to integrate the seasonal climate forecast for the crop yield forecasting. A statistical model was trained using 29 years (1991–2019) data on the Nino-3.4 Sea surface temperature anomalies (SSTA) as gridded predictors field and simulated maize yields as the predictand. After model calibration the regional aggregated hindcast simulation from 2015 to 2019 performed well (RMSE = 164 kg/ha). The yield forecasts in both the absolute and relative to the normal yield values were conducted for the 2020 season using different predictor fields and lead times from a grid cell to the national level. Yield forecast uncertainties were presented in terms of cumulative probability distributions. With reliable data and rigorous calibration, the study successfully demonstrated CRAFT's ability and applicability in forecasting maize yield for smallholder farming systems. Future studies should re-evaluate and address the importance of the size of agricultural areas while comparing aggregated simulated yields with yield data collected from a fraction of the target area.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP MODELLING DECISION SUPPORT SYSTEMS FORECASTING MAIZE
Alison Bentley Charles Chen Nunzio D'Agostino (2022, [Artículo])
Allele Mining High-Throughput Phenotyping Genomic Estimated Breeding Value CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP IMPROVEMENT DNA CHROMOSOME MAPPING GENETIC LINKAGE GENOMES GENOTYPING GERMINATION HEAT STRESS QUALITY CONTROL SINGLE NUCLEOTIDE POLYMORPHISM TRITICUM AESTIVUM GENETIC DIVERSITY (AS RESOURCE) HIGH-THROUGHPUT SEQUENCING