Filtrar por:
Tipo de publicación
- Artículo (24)
- Objeto de congreso (1)
- Tesis de maestría (1)
Autores
- Govindan Velu (3)
- Ayele Badebo Huluka (2)
- Bekele Abeyo (2)
- John Foulkes (2)
- Matthew Paul Reynolds (2)
Años de Publicación
Editores
- CICESE (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (25)
- Repositorio Institucional CICESE (1)
Tipos de Acceso
- oa:openAccess (26)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (25)
- GRAIN (17)
- YIELDS (11)
- Grain Yield (10)
- WHEAT (8)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
C.M. Parihar Hari Sankar Nayak Dipaka Ranjan Sena Renu Pandey Mahesh Gathala ML JAT (2023, [Artículo])
The Indo-Gangetic Plains (IGP) in north-west (NW) India are facing a severe decline in ground water due to prevalent rice-based cropping systems. To combat this issue, conservation agriculture (CA) with an alternative crop/s, such as maize, is being promoted. Recently, surface drip fertigation has also been evaluated as a viable option to address low-nutrient use efficiency and water scarcity problems for cereals. While the individual benefits of CA and sub-surface drip (SSD) irrigation on water economy are well-established, information regarding their combined effect in cereal-based systems is lacking. Therefore, we conducted a two-year field experiment in maize, under an ongoing CA-based maize-wheat system, to evaluate the complementarity of CA with SSD irrigation through two technological interventions–– CA+ (residue retained CA + SSD), PCA+ (partial CA without residue + SSD) – at different N rates (0, 120 and 150 kg N ha-1) in comparison to traditional furrow irrigated (FI) CA and conventional tillage (CT) at 120 kg N ha-1. Our results showed that CA+ had the highest grain yield (8.2 t ha-1), followed by PCA+ (8.1 t ha-1). The grain yield under CA+ at 150 kg N ha-1 was 27% and 30% higher than CA and CT, respectively. Even at the same N level (120 kg N ha-1), CA+ outperformed CA and CT by 16% and 18%, respectively. The physiological performance of maize also revealed that CA+ based plots with 120 kg N ha-1 had 12% and 3% higher photosynthesis rate at knee-high and silking, respectively compared to FI-CA and CT. Overall, compared to the FI-CA and CT, SSD-based CA+ and PCA+ saved 54% irrigation water and increased water productivity (WP) by more than twice. Similarly, a greater number of split N application through fertigation in PCA+ and CA+ increased agronomic nitrogen use efficiency (NUE) and recover efficiency by 8–19% and 14–25%, respectively. Net returns from PCA+ and CA+ at 150 kg N ha-1 were significantly higher by US$ 491 and 456, respectively than the FI-CA and CT treatments. Therefore, CA coupled with SSD provided tangible benefits in terms of yield, irrigation water saving, WP, NUE and profitability. Efforts should be directed towards increasing farmers’ awareness of the benefits of such promising technology for the cultivating food grains and commercial crops such as maize. Concurrently, government support and strict policies are required to enhance the system adaptability.
Net Returns Subsurface Drip Irrigation Subsurface Drip Fertigation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA EFFICIENCY GRAIN NITROGEN PHOTOSYNTHESIS PHYSIOLOGY WATER SUPPLY CONSERVATION AGRICULTURE CONVENTIONAL TILLAGE FERTIGATION GROUNDWATER NITROGEN-USE EFFICIENCY WATER PRODUCTIVITY
Xu Wang Sandesh Kumar Shrestha Philomin Juliana Suchismita Mondal Francisco Pinto Govindan Velu Leonardo Abdiel Crespo Herrera JULIO HUERTA_ESPINO Ravi Singh Jesse Poland (2023, [Artículo])
New Crop Varieties Plant Breeding Programs Yield Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA LEARNING GRAIN YIELDS WHEAT BREEDING FOOD SECURITY
Use of DH lines in maize breeding programs: CIMMYT experience
Yoseph Beyene (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE BREEDING PROGRAMMES HYBRIDS MARKER-ASSISTED SELECTION GRAIN YIELDS
Bekele Abeyo Ayele Badebo Huluka (2023, [Artículo])
GGE Biplot AMMI Model CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOFT WHEAT ENVIRONMENT GENOTYPES GRAIN YIELDS
Casper Nyaradzai Kamutando Cosmos Magorokosho Pervez Zaidi (2023, [Artículo])
Gene Action Grain Yield CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA COMBINING ABILITY EXOTIC GERMPLASM GRAIN YIELDS HEAT STRESS
Noel Ndlovu Vijay Chaikam Berhanu Tadesse Ertiro Biswanath Das Yoseph Beyene Charles Spillane Prasanna Boddupalli Manje Gowda (2023, [Artículo])
Grain Yield Low Soil Nitrogen CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GRAIN NITROGEN SOIL CHEMICOPHYSICAL PROPERTIES MAIZE QUANTITATIVE TRAIT LOCI
Gene editing to accelerate crop breeding
Kanwarpal Dhugga (2022, [Artículo])
Accelerated Breeding Grain Biofortification Maize Lethal Necrosis Rust Resistance Site-Directed Nuclease Scenarios CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BREEDING BACKCROSSING DISEASE RESISTANCE GENE EDITING GRAIN BIOFORTIFICATION RUSTS
Jingyang Tong Ming Li xianchun xia Zhonghu He Yong Zhang (2023, [Artículo])
Grain Yield KASP Marker QTL Mapping SNP Chip CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GRAIN YIELDS QUANTITATIVE TRAIT LOCI MAPPING SINGLE NUCLEOTIDE POLYMORPHISMS WHEAT BREEDING
Remote sensing of quality traits in cereal and arable production systems: A review
Zhenhai Li xiuliang jin Gerald Blasch James Taylor (2024, [Artículo])
Cereal is an essential source of calories and protein for the global population. Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers, grading harvest and categorised storage for enterprises, future trading prices, and policy planning. The use of remote sensing data with extensive spatial coverage demonstrates some potential in predicting crop quality traits. Many studies have also proposed models and methods for predicting such traits based on multi-platform remote sensing data. In this paper, the key quality traits that are of interest to producers and consumers are introduced. The literature related to grain quality prediction was analyzed in detail, and a review was conducted on remote sensing platforms, commonly used methods, potential gaps, and future trends in crop quality prediction. This review recommends new research directions that go beyond the traditional methods and discusses grain quality retrieval and the associated challenges from the perspective of remote sensing data.
Quality Traits Grain Protein CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA REMOTE SENSING QUALITY GRAIN PROTEINS CEREALS PRODUCTION SYSTEMS
Christian Thierfelder (2023, [Artículo])
This article focuses on the results from trials developed to monitor the short-term effects of conventionally tilled systems versus CA on soil quality and crop productivity under conditions of the major cropping systems in central, north-central and north-eastern regions of Namibia. Conventional tillage (CT), Minimum tillage (MT), Minimum tillage, mulch (MT-M), Minimum tillage, rotation (MT-R) and Minimum tillage, mulch and rotation (MT-MR) were the primary treatments tested. Significant differences (p≤0.000) among the treatments were observed in the 0-60 cm soil profiles where MT-M plots had the highest soil moisture content (39.8 mm, Standard Error of Mean 0.2815) over the study period. A significant difference (p=0.0206) in grain yield was observed in the second season with CT plots yielding the highest grain yield (3852.3 kg ha-1, standard error of mean 240.35). Results suggest that CA has the potential to increase water conservation and contribute to reduction of the risk of crop failure. Climate change driven degradation under conventional tillage necessitate alternative sustainable tillage methods. Conservation tillage methods and conservation agricultural practices that minimize soil disturbance while maintaining soil cover need to be adopted more locally as viable alternatives to conventional tillage.
Grain Yield Soil Moisture Content CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CONSERVATION AGRICULTURE CONVENTIONAL TILLAGE GRAIN YIELDS SOIL WATER CONTENT MAIZE