Filtros
Filtrar por:
Tipo de publicación
- Artículo (9)
- Documento de trabajo (9)
- Libro (1)
- Tesis de maestría (1)
- Otro (1)
Autores
- Tek Sapkota (5)
- MARTHA AVILÉS FLORES (3)
- NORMA RAMIREZ SALINAS (3)
- CARLOS FUENTES RUIZ (2)
- Heber Saucedo (2)
Años de Publicación
Editores
- Instituto Mexicano de Tecnología del Agua (3)
- IMTA. Coordinación de Tratamiento y Calidad del Agua. Subcoordinación de Calidad del Agua (2)
- Asociación Latinoamericana para el Avance de las Ciencias (1)
- Centro de Investigaciones y Estudios Superiores en Antropología Social (1)
- IMTA. Coordinación de Tratamiento y Calidad del Agua (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (9)
- Repositorio institucional del IMTA (8)
- CIATEQ Digital (1)
- REPOSITORIO INSTITUCIONAL DEL CIESAS (1)
- Repositorio Institucional CIBNOR (1)
Tipos de Acceso
- oa:openAccess (21)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (11)
- CLIMATE CHANGE (7)
- GREENHOUSE GAS EMISSIONS (6)
- INGENIERÍA Y TECNOLOGÍA (6)
- AGRICULTURE (4)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Miet Maertens Oyakhilomen Oyinbo Tahirou Abdoulaye Jordan Chamberlin (2023, [Artículo])
There is growing evidence on the impacts of site-specific nutrient management (SSNM) from Asia. The evidence for Sub-Saharan Africa (SSA), where SSNM developments are more recent and where conditions concerning soil fertility and fertilizer use differ importantly from those in Asia, is extremely scarce. We evaluate a SSNM advisory tool that allows extension agents to generate fertilizer recommendations tailored to the specific situation of an individual farmer’s field, using a three-year randomized controlled trial with 792 smallholder farmers in the maize belt of northern Nigeria. Two treatment arms were implemented: T1 and T2 both provide SSNM information on nutrient use and management, but T2 provides additional information on maize price distributions and the associated variability of expected returns to fertilizer use. We estimate average and heterogenous intent-to-treat effects on agronomic, economic and environmental plot-level outcomes. We find that T1 and T2 lead to substantial increases (up to 116%) in the adoption of good fertilizer management practices and T2 leads to incremental increases (up to 18%) in nutrient application rates, yields and revenues. Both treatments improve low levels of nutrient use efficiency and reduce high levels of greenhouse gas emission intensity, after two years of treatment. Our findings underscore the possibility of a more gradual and sustainable intensification of smallholder agriculture in SSA, as compared with the Asian Green Revolution, through increased fertilizer use accompanied by improved fertilizer management.
Randomized Controlled Trial CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TECHNOLOGY ADOPTION AGRICULTURAL EXTENSION GREEN REVOLUTION FERTILIZERS GREENHOUSE GAS EMISSIONS
Review of Nationally Determined Contributions (NCD) of Kenya from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
Agriculture is one of the fundamental pillars of the 2022–2027 Bottom-up Economic Transformation Plan of the Government of Kenya for tackling complex domestic and global challenges. Kenya's food system is crucial for climate change mitigation and adaptation. Kenya has prioritized aspects of agriculture, food, and land use as critical sectors for reducing emissions towards achieving Vision 2030's transformation to a low-carbon, climate-resilient development pathway. Kenya's updated NDC, as well as supporting mitigation and adaptation technical analysis reports and other policy documents, has identified an ambitious set of agroecological transformative measures to promote climate-smart agriculture, regenerative approaches, and nature-positive solutions. Kenya is committed to implementing and updating its National Climate Change Action Plans (NCCAPs) to present and achieve the greenhouse gas (GHG) emission reduction targets and resilience outcomes that it has identified.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES
Review of Nationally Determined Contributions (NCD) of China from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
China is the largest emitter of greenhouse gases (GHG) and one of the countries most affected by climate change. China's food systems are a major contributor to climate change: in 2018, China's food systems emitted 1.09 billion tons of carbondioxide equivalent (CO2eq) GHGs, accounting for 8.2% of total national GHG emissions and 2% of global emissions. According to the Third National Communication (TNC) Report, in 2010, GHG emissions from energy, industrial processes, agriculture, and waste accounted for 78.6%, 12.3%, 7.9%, and 1.2% of total emissions, respectively, (excluding emissions from land use, land-use change and forestry (LULUCF). Total GHG emissions from the waste sector in 2010 were 132 Mt CO2 eq, with municipal solid waste landfills accounting for 56 Mt. The average temperature in China has risen by 1.1°C over the last century (1908–2007), while nationally averaged precipitation amounts have increased significantly over the last 50 years. The sea level and sea surface temperature have risen by 90 mm and 0.9°C respectively in the last 30 years. A regional climate model predicted an annual mean temperature increase of 1.3–2.1°C by 2020 (2.3–3.3°C by 2050), while another model predicted a 1–1.6°C temperature increase and a 3.3–3.7 percent increase in precipitation between 2011 and 2020, depending on the emissions scenario. By 2030, sea level rise along coastal areas could be 0.01–0.16 meters, increasing the likelihood of flooding and intensified storm surges and causing the degradation of wetlands, mangroves, and coral reefs. Addressing climate change is a common human cause, and China places a high value on combating climate change. Climate change has been incorporated into national economic and social development plans, with equal emphasis on mitigation and adaptation to climate change, including an updated Nationally Determined Contribution (NDC) in 2021. The following overarching targets are included in China's updated NDC: • Peaking carbon dioxide emissions “before 2030” and achieving carbon neutrality before 2060. • Lowering carbon intensity by “over 65%” by 2030 from the 2005 level. • Increasing forest stock volume by around 6 billion cubic meters in 2030 from the 2005 level. The targets have come from several commitments made at various events, while China has explained very well the process adopted to produce its third national communication report. An examination of China's NDC reveals that it has failed to establish quantifiable and measurable targets in the agricultural sectors. According to the analysis of the breakdown of food systems and their inclusion in the NDC, the majority of food system activities are poorly mentioned. China's interventions or ambitions in this sector have received very little attention. The adaptation component is mentioned in the NDC, but is not found to be sector-specific or comprehensive. A few studies have rated the Chinese NDC as insufficient, one of the reasons being its failure to list the breakdown of each sector's clear pathway to achieving its goals. China's NDC lacks quantified data on food system sub-sectors. Climate Action Trackers' "Insufficient" rating indicates that China's domestic target for 2030 requires significant improvements to be consistent with the Paris Agreement's target of 1.5°C temperature limit. Some efforts are being made: for example, scientists from the Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (IEDA-CAAS) have developed methods for calculating GHG emissions from livestock and poultry farmers that have been published as an industrial standard by the Ministry of Agriculture and Rural Affairs, PRC (Prof Hongmin Dong, personal communication) but this still needs to be consolidated and linked to China’s NDC. The updated Nationally Determined Contributions fall short of quantifiable targets in agriculture and food systems as a whole, necessitating clear pathways. China's NDC is found to be heavily focused on a few sectors, including energy, transportation, and urban-rural development. The agricultural sectors' and food systems' targets are vague, and China's agrifood system has a large carbon footprint. As a result, China should focus on managing the food system (production, processing, transportation, and food waste management) to reduce carbon emissions. Furthermore, China should take additional measures to make its climate actions more comprehensive, quantifiable, and measurable, such as setting ambitious and clear targets for the agriculture sector, including activity-specific GHG-reduction pathways; prioritizing food waste and loss reduction and management; promoting sustainable livestock production and low carbon diets; reducing chemical pollution; minimizing the use of fossil fuel in the agri-system and focusing on developing green jobs, technological advancement and promoting climate-smart agriculture; promoting indigenous practices and locally led adaptation; restoring degraded agricultural soils and enhancing cooperation and private partnership. China should also prepare detailed NDC implementation plans including actions and the GHG reduction from conditional targets.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GREENHOUSE GAS EMISSIONS CLIMATE CHANGE FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES
Agricultural emissions reduction potential by improving technical efficiency in crop production
Arun Khatri-Chhetri Tek Sapkota sofina maharjan Paresh Shirsath (2023, [Artículo])
CONTEXT: Global and national agricultural development policies normally tend to focus more on enhancing farm productivity through technological changes than on better use of existing technologies. The role of improving technical efficiency in greenhouse gas (GHG) emissions reduction from crop production is the least explored area in the agricultural sector. But improving technical efficiency is necessary in the context of the limited availability of existing natural resources (particularly land and water) and the need for GHG emission reduction from the agriculture sector. Technical efficiency gains in the production process are linked with the amount of input used nd the cost of production that determines both economic and environmental gains from the better use of existing technologies. OBJECTIVE: To assess a relationship between technical efficiency and GHG emissions and test the hypothesis that improving technical efficiency reduces GHG emissions from crop production. METHODS: This study used input-output data collected from 10,689 rice farms and 5220 wheat farms across India to estimate technical efficiency, global warming potential, and emission intensity (GHG emissions per unit of crop production) under the existing crop production practices. The GHG emissions from rice and wheat production were estimated using the CCAFS Mitigation Options Tool (CCAFS-MOT) and the technical efficiency of production was estimated through a stochastic production frontier analysis. RESULTS AND CONCLUSIONS: Results suggest that improving technical efficiency in crop production can reduce emission intensity but not necessarily total emissions. Moreover, our analysis does not support smallholders tend to be technically less efficient and the emissions per unit of food produced by smallholders can be relatively high. Alarge proportion of smallholders have high technical efficiency, less total GHG emissions, and low emissions intensity. This study indicates the levels of technical efficiency and GHG emission are largely influenced by farming typology, i.e. choice and use of existing technologies and management practices in crop cultivation. SIGNIFICANCE: This study will help to promote existing improved technologies targeting GHG emissions reduction from the agriculture production systems.
Technical Efficiency Interventions CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MITIGATION PRODUCTIVITY CROP PRODUCTION GREENHOUSE GAS EMISSIONS
Review of Nationally Determined Contributions (NCD) of Vietnam from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
Over the past decades, Vietnam has significantly progressed and has transformed from being a food-insecure nation to one of the world’s leading exporters in food commodities, and from one of the world’s poorest countries to a low-middle-income country. The agriculture sector is dominated by rice and plays a vital role in food security, employment, and foreign exchange. Vietnam submitted its updated Nationally Determined Contributions (NDC) in 2022 based on the NDC 2020. There is a significant increase in greenhouse gas (GHG) emission reduction, towards the long-term goals identified in Vietnam’s National Climate Change Strategy to 2025, and efforts are being made to fulfil the commitments made at COP26. The Agriculture Sector is the second-largest contributor of GHG emissions in Vietnam, accounting for 89.75 MtCO2eq, which was about 31.6 percent of total emissions in 2014. Rice cultivation is the biggest source of emissions in the agriculture sector, accounting for 49.35% of emissions from agriculture. The total GHG removal from Land Use, Land Use Change and Forestry (LULUCF) in 2014 was -37.54 MtCO2eq, of which the largest part was from the forest land sub-sector (35.61 MtCO2eq), followed by removal from croplands (7.31 MtCO2eq) (MONRE 2019).
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS
Review of Nationally Determined Contributions (NCD) of Colombia from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
Food is a vital component of Colombia's economy. The impact of climate change on agriculture and food security in the country is severe. The effects have resulted in decreased production and in the productivity of agricultural soil. Desertification processes are accelerating and intensifying. Colombia's government formally submitted its Nationally Determined Contribution (NDC) on December 29, 2020. This paper examines Colombia's NDC from the standpoint of the food system.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES
Sieglinde Snapp Yodit Kebede Eva Wollenberg (2023, [Artículo])
A critical question is whether agroecology can promote climate change mitigation and adaptation outcomes without compromising food security. We assessed the outcomes of smallholder agricultural systems and practices in low- and middle-income countries (LMICs) against 35 mitigation, adaptation, and yield indicators by reviewing 50 articles with 77 cases of agroecological treatments relative to a baseline of conventional practices. Crop yields were higher for 63% of cases reporting yields. Crop diversity, income diversity, net income, reduced income variability, nutrient regulation, and reduced pest infestation, indicators of adaptative capacity, were associated with 70% or more of cases. Limited information on climate change mitigation, such as greenhouse gas emissions and carbon sequestration impacts, was available. Overall, the evidence indicates that use of organic nutrient sources, diversifying systems with legumes and integrated pest management lead to climate change adaptation in multiple contexts. Landscape mosaics, biological control (e.g., enhancement of beneficial organisms) and field sanitation measures do not yet have sufficient evidence based on this review. Widespread adoption of agroecological practices and system transformations shows promise to contribute to climate change services and food security in LMICs. Gaps in adaptation and mitigation strategies and areas for policy and research interventions are finally discussed.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE CROPS FOOD SUPPLY GAS EMISSIONS GREENHOUSE GASES FARMING SYSTEMS AGROECOLOGY FOOD SECURITY LESS FAVOURED AREAS SMALLHOLDERS YIELDS NUTRIENTS BIOLOGICAL PEST CONTROL CARBON SEQUESTRATION LEGUMES
Sonam Sherpa virender kumar Andrew Mcdonald (2024, [Artículo])
Crop residue burning is a common practice in many parts of the world that causes air pollution and greenhouse gas (GHG) emissions. Regenerative practices that return residues to the soil offer a ‘no burn’ pathway for addressing air pollution while building soil organic carbon (SOC). Nevertheless, GHG emissions in rice-based agricultural systems are complex and difficult to anticipate, particularly in production contexts with highly variable hydrologic conditions. Here we predict long-term net GHG fluxes for four rice residue management strategies in the context of rice-wheat cropping systems in Eastern India: burning, soil incorporation, livestock fodder, and biochar. Estimations were based on a combination of Tier 1, 2, and 3 modelling approaches, including 100-year DNDC simulations across three representative soil hydrologic categories (i.e., dry, median, and wet). Overall, residue burning resulted in total direct GHG fluxes of 2.5, 6.1, and 8.7 Mg CO2-e in the dry, median, and wet hydrologic categories, respectively. Relative to emissions from burning (positive values indicate an increase) for the same dry to wet hydrologic categories, soil incorporation resulted in a −0.2, 1.8, or 3.1 Mg CO2-e change in emissions whereas use of residues for livestock fodder increased emissions by 2.0, 2.1, or 2.3 Mg CO2-e. Biochar reduced emissions relative to burning by 2.9 Mg CO2-e in all hydrologic categories. This study showed that the production environment has a controlling effect on methane and, therefore, net GHG balance. For example, wetter sites had 2.8–4.0 times greater CH4 emissions, on average, than dry sites when rice residues were returned to the soil. To effectively mitigate burning without undermining climate change mitigation goals, our results suggest that geographically-target approaches should be used in the rice-based systems of Eastern India to incentivize the adoption of regenerative ‘no burn’ residue management practices.
Soil Carbon Rice Residue Burning Life Cycle Assessment CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL CARBON RICE LIFE CYCLE GREENHOUSE GASES CLIMATE CHANGE
The impact of 1.5 °C and 2.0 °C global warming on global maize production and trade
Wei Xiong Tariq Ali (2022, [Artículo])
Future Climate Scenario Data Yield Reduction Risk CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE EFFECT MAIZE MITIGATION SIMULATION ACCLIMATIZATION ADAPTATION GLOBAL WARMING
Diseño de riego por melgas empleando las ecuaciones de Saint-Venant, y Green y Ampt
Heber Saucedo MANUEL ZAVALA TREJO CARLOS FUENTES RUIZ (2015, [Artículo])
Se presenta un método de diseño de riego por melgas basado en la aplicación de un modelo que emplea las ecuaciones de Saint-Venant, para describir el flujo del agua sobre el suelo, y la ecuación de Green y Ampt, para representar el flujo del agua en el suelo. La principal ventaja del modelo presentado es el poco tiempo de cómputo que requiere para su aplicación, en comparación con el necesario para ejecutar un modelo hidrodinámico completo reportado en la literatura, mismo que emplea las ecuaciones de Saint-Venant para el flujo del agua sobre el suelo, acopladas internamente con la ecuación de Richards, que permite modelar el flujo del agua en el suelo.
Riego por inundación controlada Modelos matemáticos Gasto óptimo CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA