Filtrar por:
Tipo de publicación
- Artículo (17)
- Objeto de congreso (2)
- Libro (1)
- Documento de trabajo (1)
Autores
- Chris Ojiewo (2)
- Frédéric Baudron (2)
- Jill Cairns (2)
- Kanwarpal Dhugga (2)
- Santiago Lopez-Ridaura (2)
Años de Publicación
Editores
- Agronomy (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (20)
- Repositorio Institucional de Ciencia Abierta de la Universidad Autónoma de Guerrero (1)
Tipos de Acceso
- oa:openAccess (21)
Idiomas
- eng (21)
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (20)
- CROPS (14)
- CLIMATE CHANGE (5)
- MAIZE (4)
- SMALLHOLDERS (4)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Vanika Garg Rutwik Barmukh Manish Roorkiwal Chris Ojiewo Abhishek Bohra MAHENDAR THUDI Vikas Kumar Singh Himabindu Kudapa Reyaz Mir Chellapilla Bharadwaj Xin Liu Manish Pandey (2024, [Artículo])
Agricultural Biotechnology Crop Genomics Genome Sequencing CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOTECHNOLOGY CROPS GENOMICS PLANT BREEDING AGRICULTURE GENETIC IMPROVEMENT
Redesigning crop varieties to win the race between climate change and food security
Kevin Pixley Jill Cairns Santiago Lopez-Ridaura Chris Ojiewo Baloua Nébié Godfrey Asea Biswanath Das Benoit Joseph Batieno Clare Mukankusi Sarah Hearne Kanwarpal Dhugga Sieglinde Snapp Ernesto Adair Zepeda Villarreal (2023, [Artículo])
Crop Breeding Expert Survey CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE CROPPING SYSTEMS FOOD SECURITY CROPS
Establishment of heterotic groups for hybrid wheat breeding
Yunbi Xu (2022, [Artículo])
Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE CROPS FORECASTING PLANTS COMBINING ABILITY HETEROSIS HETEROTIC GROUPS MALE INFERTILITY PLANT HEIGHT WHEAT
Manje Gowda Prasanna Boddupalli Kanwarpal Dhugga Vijay Chaikam (2023, [Artículo])
R1-nj Marker Embryo Rescue False Positives False Detection Rate False Negative Rate CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DOUBLED HAPLOIDS MAIZE BREEDING PROGRAMMES INBRED LINES CROPS
M. Humberto Reyes-Valdés Juan Burgueño Carolina Sansaloni Thomas Payne Rosa Angela Pacheco Gil (2022, [Artículo])
Crop Genebanks Optimization Relative Balance CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROPS GENE BANKS WHEAT
Economics of crop residue management
Vijesh Krishna Maxwell Mkondiwa (2023, [Artículo])
More than five billion metric tons of agricultural residues are produced annually worldwide. Despite having multiple uses and significant potential to augment crop and livestock production, a large share of crop residues is burned, especially in Asian countries. This unsustainable practice causes tremendous air pollution and health hazards while restricting soil nutrient recycling. In this review, we examine the economic rationale for unsustainable residue management. The sustainability of residue utilization is determined by several economic factors, such as local demand for and quantity of residue production, development and dissemination of technologies to absorb excess residue, and market and policy instruments to internalize the social costs of residue burning. The intervention strategy to ensure sustainable residue management depends on public awareness of the private and societal costs of open residue burning.
Crop Biomass Residue Burning Environmental Effects CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROPS BIOMASS RESIDUES ENVIRONMENTAL IMPACT CLIMATE CHANGE SMALLHOLDERS TECHNOLOGY ADOPTION
Sieglinde Snapp Yodit Kebede Eva Wollenberg (2023, [Artículo])
A critical question is whether agroecology can promote climate change mitigation and adaptation outcomes without compromising food security. We assessed the outcomes of smallholder agricultural systems and practices in low- and middle-income countries (LMICs) against 35 mitigation, adaptation, and yield indicators by reviewing 50 articles with 77 cases of agroecological treatments relative to a baseline of conventional practices. Crop yields were higher for 63% of cases reporting yields. Crop diversity, income diversity, net income, reduced income variability, nutrient regulation, and reduced pest infestation, indicators of adaptative capacity, were associated with 70% or more of cases. Limited information on climate change mitigation, such as greenhouse gas emissions and carbon sequestration impacts, was available. Overall, the evidence indicates that use of organic nutrient sources, diversifying systems with legumes and integrated pest management lead to climate change adaptation in multiple contexts. Landscape mosaics, biological control (e.g., enhancement of beneficial organisms) and field sanitation measures do not yet have sufficient evidence based on this review. Widespread adoption of agroecological practices and system transformations shows promise to contribute to climate change services and food security in LMICs. Gaps in adaptation and mitigation strategies and areas for policy and research interventions are finally discussed.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE CROPS FOOD SUPPLY GAS EMISSIONS GREENHOUSE GASES FARMING SYSTEMS AGROECOLOGY FOOD SECURITY LESS FAVOURED AREAS SMALLHOLDERS YIELDS NUTRIENTS BIOLOGICAL PEST CONTROL CARBON SEQUESTRATION LEGUMES
Francois Tardieu (2007, [Artículo])
Environmental Stimuli Expansins CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CELLS CROPS GENETIC ENGINEERING PROTEINS TISSUE EPIDERMIS ZEA MAYS
Mapping crop and livestock value chain actors in Mbire and Murehwa districts in Zimbabwe
Hambulo Ngoma Moti Jaleta Frédéric Baudron (2023, [Documento de trabajo])
We conducted a preliminary value chain actors mapping for major crops grown and livestock kept by smallholder farmers in Mbire and Murehwa districts of Zimbabwe. Accordingly, in this report we mapped value chain actors for 11 crops and livestock commodities: namely, sorghum, cotton, sesame, maize, groundnut, sweet-potato, vegetables (tomato and onion), cattle, goats, poultry, and honey/beekeeping. Except sesame from Mbire, most of the crop and livestock commodities are channeled to the main markets in Harare and Marondera for Murehwa. Sesame is smuggled to Mozambique and the market is mainly dependent on middlemen. The Grain Market Board (GMB) is the major actor in sorghum and maize marketing in both districts. Groundnut is sold to both rural and urban consumers after processing it to peanut butter locally within the production zones. Goats and cattle are mostly supplied to the Harare market by middlemen collecting these livestock from village markets and moving door-to-door to buy enough quantity to transport to Harare. Honey production and marketing is still at its initial stage through the support of HELP from Germany and the Zimbabwe Apiculture Trust projects. Long dry season is a challenge in honey production. The Pfumvudza program supported by the Presidential free input scheme helped in introducing and scaling conservation agriculture practices in Zimbabwe. Though there is strong integration of crop-livestock systems at both districts, the level of manure use is gradually decreasing because farmers receive chemical fertilizer support from the Pfumvudza program and applying manure to crop fields is labor-intensive. The input supply system is more competitive in Murehwa district where there are quite several input suppliers in town. The possible interventions that favor agroecological transitions are: (1) honey processing plants and supply of beehives to potential areas, (2) encouraging manure use in crop production, possibly linking it to the basins preparation requirement to be eligible for the presidential input subsidy scheme, (3) support the organic vegetable production initiatives and explore market segments in Harare paying premium prices for certified organic products, (4) Expedite payment systems in sorghum and maize marketing with GMB, and (5) sesame production with agroecologically friendly agronomy and improve markets.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA VALUE CHAINS CROPS LIVESTOCK SMALLHOLDERS SUPPLY CHAINS
João Vasco Silva Pytrik Reidsma (2024, [Artículo])
Nitrogen (N) management is essential to ensure crop growth and to balance production, economic, and environmental objectives from farm to regional levels. This study aimed to extend the WOFOST crop model with N limited production and use the model to explore options for sustainable N management for winter wheat in the Netherlands. The extensions consisted of the simulation of crop and soil N processes, stress responses to N deficiencies, and the maximum gross CO2 assimilation rate being computed from the leaf N concentration. A new soil N module, abbreviated as SNOMIN (Soil Nitrogen for Organic and Mineral Nitrogen module) was developed. The model was calibrated and evaluated against field data. The model reproduced the measured grain dry matter in all treatments in both the calibration and evaluation data sets with a RMSE of 1.2 Mg ha−1 and the measured aboveground N uptake with a RMSE of 39 kg N ha−1. Subsequently, the model was applied in a scenario analysis exploring different pathways for sustainable N use on farmers' wheat fields in the Netherlands. Farmers' reported yield and N fertilization management practices were obtained for 141 fields in Flevoland between 2015 and 2017, representing the baseline. Actual N input and N output (amount of N in grains at harvest) were estimated for each field from these data. Water and N-limited yields and N outputs were simulated for these fields to estimate the maximum attainable yield and N output under the reported N management. The investigated scenarios included (1) closing efficiency yield gaps, (2) adjusting N input to the minimum level possible without incurring yield losses, and (3) achieving 90% of the simulated water-limited yield. Scenarios 2 and 3 were devised to allow for soil N mining (2a and 3a) and to not allow for soil N mining (2b and 3b). The results of the scenario analysis show that the largest N surplus reductions without soil N mining, relative to the baseline, can be obtained in scenario 1, with an average of 75%. Accepting negative N surpluses (while maintaining yield) would allow maximum N input reductions of 84 kg N ha−1 (39%) on average (scenario 2a). However, the adjustment in N input for these pathways, and the resulting N surplus, varied strongly across fields, with some fields requiring greater N input than used by farmers.
Crop Growth Models WOFOST CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROPS NITROGEN-USE EFFICIENCY WINTER WHEAT SOIL WATER