Advanced search


Knowledge area




5 results, page 1 of 1

Rainfall water quality at Atlixco, Puebla

Margarita Teutli Andrés Armando Sánchez Erendira Moreno Gutierrez (2021)

This work reports the follow up of rainfall water quality at Atlixco, Puebla during the 2018 season. The main objective of this work was to evaluate how height and pollutants define the quality of water precipitated. Samples were collected at the roof of a house in Atlixco center, and others at the roof of a convent located at the San Miguel Hill, this represents a 44 m difference in height. Chemical composition was analyzed for 19 physicochemical parameters using gravimetric and spectrophotometric techniques. Obtained results were compared with drinking water standards finding that Pb and Cd contents are exceeded. Also, it was found a strong contribution of terrestrial sources since the marine rates are above unit, as well as excess concentrations whose values go from negative to positive. Finally, Pearson correlation was obtained finding that most of chemical parameters correlations are in disagreement for both sites, fact which confirms that ionic content is strongly influenced by anthropogenic sources.

Article

Artículo

rainfall ionic content marine rates excess concentrations Lluvia contenido iónico cociente marino concentración en exceso Estudios urbanos CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA

In vitro Digestibility of Yarrowia lipolytica Yeast and Growth Performance in Whiteleg Shrimp Litopenaeus vannamei

ANA RUTH ALVAREZ SANCHEZ CLAUDIO HUMBERTO MEJIA RUIZ Héctor Gerardo Nolasco Soria Alberto Peña Rodríguez (2018)

"Marine yeasts used in aquaculture disease control can also be an important protein source for improving feeding and nutrition of crustaceans. Yarrowia lipolyticca has been studied for its capacity to secrete heterologous proteins and high content of unsaturated fatty acids, beta-glucan, and mannane polymers in the cell wall. We measured in vitro digestibility of Y. lipolyticca by whiteleg shrimp Litopenaeus vannamei digestive enzymes, and an in vivo assay of Y. lipolytica in feed onwhiteleg shrimp growth. We found that digestive gland enzymes of shrimp digest Y. lipolytica, based on reduced optical density of a yeast suspension. Digestion was –0.00236 ± 0.00010 OD U min–1 for intact cells and –0.00325 ± 0.00010 OD U min–1 for lysed cells. Release of reducing sugars in intact cells (5.3940 ± 0.1713 μmol h–1), and lysed cells (0.8396 ± 0.2251 μmol h–1) was measured. Digestive gland treatment significantly reduced cell viability (near 100%), relative to the control. Electron microscopy shows that the cell wall of Y. lipolytica exposed to the digestive gland enzymes was severely damaged. Shrimp diet containing Y. lipolytica resulted in significantly higher weight gain and specific growth rate of whiteleg shrimp."

Article

Marine yeast, cell digestibility, cell viability, turbidimetry, reduced sugars BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOQUÍMICA BIOQUÍMICA DE ALIMENTOS BIOQUÍMICA DE ALIMENTOS

Do marine reserves increase prey for California sea lions and Pacific harbor seals?

ALEJANDRO ARIAS DEL RAZO (2019)

Community marine reserves are geographical areas closed to fishing activities, implemented and enforced by the same fishermen that fish around them. Their main objective is to recover commercial stocks of fish and invertebrates. While marine reserves have proven successful in many parts of the world, their success near important marine predator colonies, such as the California sea lion (Zalophus californianus) and the Pacific harbor seal (Phoca vitulina richardii), is yet to be analyzed. In response to the concerns expressed by local fishermen about the impact of the presence of pinnipeds on their communities’ marine reserves, we conducted underwater surveys around four islands in the Pacific west of the Baja California Peninsula: two without reserves (Todos Santos and San Roque); one with a recently established reserve (San Jeronimo); and, a fourth with reserves established eight years ago (Natividad). All these islands are subject to similar rates of exploitation by fishing cooperatives with exclusive rights. We estimated fish biomass and biodiversity in the seas around the islands, applying filters for potential California sea lion and harbor seal prey using known species from the literature. Generalized linear mixed models revealed that the age of the reserve has a significant positive effect on fish biomass, while the site (inside or outside of the reserve) did not, with a similar result found for the biomass of the prey of the California sea lion. Fish biodiversity was also higher around Natividad Island, while invertebrate biodiversity was higher around San Roque. These findings indicate that marine reserves increase overall fish diversity and biomass, despite the presence of top predators, even increasing the numbers of their potential prey. Community marine reserves may help to improve the resilience of marine mammals to climate-driven phenomena and maintain a healthy marine ecosystem for the benefit of both pinnipeds and fishermen. © 2019 Arias-Del-Razo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Article

Article, biodiversity, biomass, climate change, ecosystem resilience, environmental exploitation, fish stock, fishing, marine environment, marine invertebrate, nonhuman, Phoca vitulina, Pinnipedia, prey searching, Zalophus californianus, animal, biom BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA ANIMAL (ZOOLOGÍA) BIOLOGÍA ANIMAL (ZOOLOGÍA)

Assessing the Spatiotemporal Relationship between Coastal Habitats and Fish Assemblages at Two Neotropical Estuaries of the Mexican Pacific

VICTOR MANUEL MURO TORRES FELIPE AMEZCUA MARTINEZ Gerogina Ramírez Ortiz FRANCISCO JAVIER FLORES DE SANTIAGO Felipe Amezcua Linares Yareli Hernández Álvarez (2022)

"Differences in fish assemblages’ structures and their relations with environmental variables (due to the variations in sampled seasons, habitats, and zones) were analyzed in two adjacent estuaries on the north Pacific coast of Mexico. Environmental variables and fish catches were registered monthly between August 2018 and October 2020. Multivariate analyses were conducted to define habitats and zones based on their environmental characteristics, and the effect of this variability on fish assemblages’ composition, biomass, and diversity (α and β) was evaluated. A total of 12,008 fish individuals of 143 species were collected using different fishing nets. Multivariate analyses indicated that fish assemblages’ structures were different between zones due to the presence, height, and coverage of distinct mangrove species. Additionally, depth and salinity showed effects on fish assemblages’ diversity (α and β-nestedness), which presented higher values in the ocean and remained similar in the rest of the analyzed zones and habitats. These results and the differences in species replacement (β-turnover) indicate the singularity of fish assemblages at estuaries (even in areas close to the ocean) and the necessity to establish local management strategies for these ecosystems."

Article

mangrove forests, marine protected areas, alpha diversity, beta diversity, multivariate analyses CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CIENCIAS AGRARIAS PECES Y FAUNA SILVESTRE DINÁMICA DE LAS POBLACIONES DINÁMICA DE LAS POBLACIONES

Rapid effects of marine reserves via larval dispersal

Richard Cudney Bueno (2009)

Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs), with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest. © 2009 Cudney-Bueno et al.

Article

article, environmental monitoring, fishery, larva, marine environment, marine species, Mexico, mollusc, nonhuman, oceanography, prediction, animal, biology, environmental protection, food industry, geography, growth, development and aging, larva, met CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA