Filtrar por:
Tipo de publicación
- Artículo (8)
- Tesis de maestría (1)
Autores
- Hugo De Groote (2)
- ALEJANDRO MUÑOZ URIAS (1)
- Alexander Lichius (1)
- Ana Luisa Garcia-Oliveira (1)
- Anani Bruce (1)
Años de Publicación
Editores
- Alexandra Carolyn Brand, University of Aberdeen, United Kingdom (1)
- El autor (1)
- Martine Bassilana, Université de Nice-CNRS, France (1)
- Sociedad Botánica de México (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (4)
- Repositorio Institucional CICESE (3)
- Repositorio IPICYT (1)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (1)
Tipos de Acceso
- oa:openAccess (9)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (7)
- MICROBIOLOGÍA (4)
- BIOLOGÍA Y QUÍMICA (3)
- CIENCIAS DE LA VIDA (3)
- MAIZE (3)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
9 resultados, página 1 de 1
Hugo De Groote Bart Minten (2024, [Artículo])
Seasonal price variability for cereals is two to three times higher in Africa than on the international reference market. Seasonality is even more pronounced when access to appropriate storage and opportunities for price arbitrage are limited. As smallholder farmers typically sell their production after harvest, when prices are low, this leads to lower incomes as well as higher food insecurity during the lean season, when prices are high. One solution to reduce seasonal stress is the use of improved storage technologies. Using data from a randomised controlled trial, in a major maize-growing region of Western Ethiopia, we study the impact of hermetic bags, a technology that protects stored grain against insect pests, so that the grain can be stored longer. Despite considerable price seasonality—maize prices in the lean season are 36% higher than after harvesting—we find no evidence that hermetic bags improve welfare, except that access to these bags allowed for a marginally longer storage period of maize intended for sale by 2 weeks. But this did not translate into measurable welfare gains as we found no changes in any of our welfare outcome indicators. This ‘near-null’ effect is due to the fact that maize storage losses in our study region are relatively lower than previous studies suggested—around 10% of the quantity stored—likely because of the widespread use of an alternative to protect maize during storage, for example a cheap but highly toxic fumigant. These findings are important for policies that seek to promote improved storage technologies in these settings.
Hermetic Storage Randomised Controlled Trial CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA STORAGE PILOT FARMS SEASONALITY WELFARE MAIZE
Ana Luisa Garcia-Oliveira Mahalingam Govindaraj Rodomiro Ortiz (2023, [Artículo])
Bioaccessibility and Absorption Biofortified Crop Cultivars Genes and Genetic Markers Nutrient Acquisition Transport and Storage CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOAVAILABILITY ABSORPTION CLIMATE CHANGE GENETIC MARKERS GENETIC ENGINEERING NUTRIENTS TRANSPORT STORAGE
Fuai Sun XUECAI ZHANG Haoqiang Yu (2022, [Artículo])
BZR1s CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ARABIDOPSIS DNA BINDING PROTEINS PLANT PROTEIN TRANSCRIPTION FACTORS DROUGHT GENE EXPRESSION REGULATION GENETICS MAIZE METABOLISM TRANSGENIC PLANTS ABIOTIC STRESS
On-farm storage loss estimates of maize in Kenya using community survey methods
Hugo De Groote Anani Bruce (2023, [Artículo])
Maize is the most important staple in sub-Saharan Africa (SSA), with highly seasonal production. High storage losses affect food security, but good estimations are lacking. A new method using focus group discussions (FGDs) was tested with 121 communities (1439 farmers, 52% women) in Kenya's six maize-growing zones, to estimate the maize losses to storage pests and analyze farmer practices. As control strategies, half of the farmers used chemical pesticides (49%), while hermetic bags (16%) and botanicals (15%) were also popular. Relative loss from weevils in the long rains was estimated at 23%, in the short rains 18%, and annually 21%. Fewer farmers were affected by the larger grain borer (LGB) than by maize weevils: 42% in the long rainy season and 32% in the short rainy season; losses from LGB were also smaller: 19% in the long season, 17% in the short season, and 18% over the year. Total storage loss, from both species combined, was estimated at 36%, or 671,000 tonnes per year. The greatest losses occur in the humid areas, especially the moist mid-altitudes (56%), and with smaller loss in the drylands (20–23%). Extrapolating the point data and overlaying with the maize production map shows the geographic distribution of the losses, with the most important area found around Lake Victoria. FGDs provide convenient and cheap tools to estimate storage losses in representative communities, but a total loss estimate of 36% is higher than is found in other studies, so its accuracy and framing effects need to be assessed. We conclude that storage pests remain a major problem, especially in western Kenya, and that the use of environmentally friendly technologies such as hermetic storage and botanicals needs more attention, both by the public extension service and private agrodealers.
Larger Grain Borer Maize Weevil CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE STORAGE LOSSES PESTS SURVEY METHODS
César Jacobo Pereira MIGUEL ANGEL MUÑIZ CASTRO JOSE ANTONIO VAZQUEZ GARCIA Joel David Flores Rivas ALEJANDRO MUÑOZ URIAS FRANCISCO MARTIN HUERTA MARTINEZ (2022, [Artículo])
"Background: Populus luziarum and P. primaveralepensis are endemic species of western Mexico; growing in riparian forests they are critically endangered. The best way to conserve their seeds is unknown, which could be limiting for their conservation.
Hypothesis: The germinability of both subtropical species is like that of boreal and template Salicaceae species that disperse seeds in spring and early summer, as they germinate quickly with high percentages, and rapidly lose their viability when stored at ambient temperature.
Studied species: Populus luziarum and P. primaveralepensis. Study site and dates: Western Trans-Mexican Volcanic Belt. Jalisco, Mexico. October 2019.
Methods: The physical integrity of the seeds was assessed by X-ray imaging and compared with germinability. In addition, the effect of storage time (nine weeks) under two temperatures (4 and 21 °C) on the percentage and mean germination rate was evaluated.
Results: No significant differences were found between physical integrity and germination in freshly collected seeds for both species. Germination in the first 24 hrs was 91 and 95 % for Populus luziarum and P. primaveralepensis, respectively (week 0). Germination percentages were lower when stored at 21 °C, but P. primaveralepensis was decreased more slowly.
Conclusions: Seeds of subtropical Populus respond similarly to those of species from temperate and boreal climates with early seed dispersal, a crucial condition for establishing ex situ reforestation and conservation programs."
Salicaceae Seed physical integrity Seed storage conditions Subtropical endemic species White poplars BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) BIOLOGÍA VEGETAL (BOTÁNICA)
Aplicación de 1-MCP en diferentes ecotipos de ciruela mexicana (Spondias purpurea L.) de México
MARÍA GORETTI TRANSITO DAMASO (2023, [Tesis de maestría])
La ciruela mexicana es un frutal nativo de México, se distribuye en la vertiente del
Pacífico, centro de Veracruz y Península de Yucatán. El árbol de ciruela mexicana
produce frutos de diferentes tamaños, colores y sabores, existe una gran diversidad
que se aprecia tanto en los meses de marzo a junio, como de septiembre a noviembre.
El principal uso de la fruta es en fresco como fruta de temporada, la vida útil de la
ciruela de estación seca no es mayor a 5 d, por lo cual es un frutal que se considera
importante de manera local. Actualmente poco se han desarrollado y evaluado
tecnologías para incrementar la vida útil de este producto hortícola, por lo que en el
presente trabajo se evaluó la respuesta de cinco ecotipos de ciruela mexicana a la
aplicación de 1-metilciclopropeno (1-MCP), con la finalidad de proponerlo para el
desarrollo del manejo poscosecha adecuado de esta fruta. Durante abril a septiembre
de 2022 se cosecharon frutos de ciruela mexicana procedentes de Guerrero y Morelos.
Los frutos se cosecharon en etapa ½ verde. Los frutos fueron transportados al
Laboratorio de Producción Agrícola de la Facultad de Ciencias Agropecuarias en la
Universidad Autónoma del Estado de Morelos, donde se lavaron y se dejaron secar al
ambiente. Posteriormente se colocaron en cajas de plástico herméticas durante 12 h
y se aplicó 0, 500 y 1000 nL L-1 de 1-MCP, se evaluaron a temperatura ambiente (24.9
± 1 °C; 55.1 ± 6 % HR) y después de 5, 10 y 15 d en almacenamiento a 12 °C. Se
evaluaron los cambios fisicoquímicos y fisiológicos de cada ecotipo. La aplicación de
1-MCP, independiente del tiempo de almacenamiento inhibió y retrasó la velocidad de
respiración y producción de etileno, mantuvo la firmeza y retrasó la pigmentación
característica de cada ecotipo, con poca acción en la concentración de sólidos solubles
totales y acidez titulable, sin efecto claro en compuestos fenólicos, flavonoides y
actividad antioxidante, y sin ningún efecto en la pérdida de masa. El efecto del 1-MCP
permite conservar la fruta a temperatura ambiente hasta 6 u 8 d; la refrigeración a 12
°C potencia la acción del 1-MCP permitiendo conservar hasta 9 a 20 d después de
salir de almacenamiento.
The Mexican plum is a fruit native to Mexico, it is distributed on the Pacific slope, central
Veracruz and Yucatan Peninsula. The Mexican plum tree produces fruits of different
sizes, colors and flavors, there is a great diversity that is appreciated both in the months
of March to June, and from September to November. The main use of the fruit is fresh
as a seasonal fruit, the shelf life of the dry season plum is not more than 5 d, so it is a
fruit tree that is considered important locally. Currently, little technologies have been
developed and evaluated to increase the shelf life of this horticultural product, so in this
work the response of five ecotypes of Mexican plum to the application of 1-
methylcyclopropene (1-MCP) was evaluated, in order to propose it for the development
of adequate postharvest management of this fruit. During April to September 2022,
Mexican plum fruits were harvested from Guerrero and Morelos. The fruits were
harvested in stage 1/2 green. The fruits were transported to the Agricultural Production
Laboratory of the Faculty of Agricultural Sciences at the Autonomous University of the
State of Morelos, where they were washed and left to dry in the environment.
Subsequently, they were placed in airtight plastic boxes for 12 h and 0, 500 and 1000
nL L-1 of 1-MCP were applied, evaluated at room temperature (24.9 ± 1.1 °C; 55.1 ±
6.2 % RH) and after 5, 10 and 15 d in storage at 12 °C. The physicochemical and
physiological changes of each ecotype were evaluated. The application of 1-MCP,
independent of storage time inhibited and delayed the rate of respiration and production
of ethylene, maintained the firmness and delayed the pigmentation characteristic of
each ecotype, with little action on the concentration of total soluble solids and titratable
acidity, with no clear effect on phenolic compounds, flavonoids and antioxidant activity,
and without any effect on mass loss. The effect of 1-MCP allows the fruit to be
preserved at room temperature up to 6 or 8 d; cooling at 12 °C enhances the action of
1-MCP allowing to preserve up to 9 to 20 d after leaving storage
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CIENCIAS AGRARIAS Ciruela mexicana, 1-metilciclopropeno, almacenamiento, refrigeración, calidad, poscosecha Mexican plum, 1-methylcyclopropene, storage, refrigeration, quality, postharvest.
Molecular modeling simulation studies reveal new potential inhibitors against HPV E6 protein
Joel Ricci-Lopez (2019, [Artículo])
High-risk strains of human papillomavirus (HPV) have been identified as the etiologic agent of some anogenital tract, head, and neck cancers. Although prophylactic HPV vaccines have been approved; it is still necessary a drug-based treatment against the infection and its oncogenic effects. The E6 oncoprotein is one of the most studied therapeutic targets of HPV, it has been identified as a key factor in cell immortalization and tumor progression in HPV-positive cells. E6 can promote the degradation of p53, a tumor suppressor protein, through the interaction with the cellular ubiquitin ligase E6AP. Therefore, preventing the formation of the E6-E6AP complex is one of the main strategies to inhibit the viability and proliferation of infected cells. Herein, we propose an in silico pipeline to identify small-molecule inhibitors of the E6-E6AP interaction. Virtual screening was carried out by predicting the ADME properties of the molecules and performing ensemble-based docking simulations to E6 protein followed by binding free energy estimation through MM/PB(GB)SA methods. Finally, the top-three compounds were selected, and their stability in the E6 docked complex and their effect in the inhibition of the E6-E6AP interaction was corroborated by molecular dynamics simulation. Therefore, this pipeline and the identified molecules represent a new starting point in the development of anti-HPV drugs. © 2019 Ricci-López et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
ligand, luteolin, protein E6, protein inhibitor, ubiquitin protein ligase, ubiquitin protein ligase E6AP, unclassified drug, antivirus agent, DNA binding protein, E6 protein, Human papillomavirus type 18, oncoprotein, protein binding, protein p53, TP CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA
Alexander Lichius (2012, [Artículo])
A key multiprotein complex involved in regulating the actin cytoskeleton and secretory machinery required for polarized growth in fungi, is the polarisome. Recognized core constituents in budding yeast are the proteins Spa2, Pea2, Aip3/Bud6, and the key effector Bni1. Multicellular fungi display a more complex polarized morphogenesis than yeasts, suggesting that the filamentous fungal polarisome might fulfill additional functions. In this study, we compared the subcellular organization and dynamics of the putative polarisome components BUD-6 and BNI-1 with those of the bona fide polarisome marker SPA-2 at various developmental stages of Neurospora crassa. All three proteins exhibited a yeast-like polarisome configuration during polarized germ tube growth, cell fusion, septal pore plugging and tip repolarization. However, the localization patterns of all three proteins showed spatiotemporally distinct characteristics during the establishment of new polar axes, septum formation and cytokinesis, and maintained hyphal tip growth. Most notably, in vegetative hyphal tips BUD-6 accumulated as a subapical cloud excluded from the Spitzenkörper (Spk), whereas BNI-1 and SPA-2 partially colocalized with the Spk and the tip apex. Novel roles during septal plugging and cytokinesis, connected to the reinitiation of tip growth upon physical injury and conidial maturation, were identified for BUD-6 and BNI-1, respectively. Phenotypic analyses of gene deletion mutants revealed additional functions for BUD-6 and BNI-1 in cell fusion regulation, and the maintenance of Spk integrity. Considered together, our findings reveal novel polarisome-independent functions of BUD-6 and BNI-1 in Neurospora, but also suggest that all three proteins cooperate at plugged septal pores, and their complex arrangement within the apical dome of mature hypha might represent a novel aspect of filamentous fungal polarisome architecture. © 2012 Lichius et al.
fungal protein, protein BNI 1, protein BUD 6, protein SPA 2, protein Spk, unclassified drug, actin binding protein, cytoskeleton protein, fungal protein, article, cell fusion, cellular distribution, comparative study, conidium, controlled study, cyto BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA MICROBIOLOGÍA MICROBIOLOGÍA
RAMON OSVALDO ECHAURI ESPINOSA (2012, [Artículo])
Coronin plays a major role in the organization and dynamics of actin in yeast. To investigate the role of coronin in a filamentous fungus (Neurospora crassa), we examined its subcellular localization using fluorescent proteins and the phenotypic consequences of coronin gene (crn-1) deletion in hyphal morphogenesis, Spitzenkörper behavior and endocytosis. Coronin-GFP was localized in patches, forming a subapical collar near the hyphal apex; significantly, it was absent from the apex. The subapical patches of coronin colocalized with fimbrin, Arp2/3 complex, and actin, altogether comprising the endocytic collar. Deletion of crn-1 resulted in reduced hyphal growth rates, distorted hyphal morphology, uneven wall thickness, and delayed establishment of polarity during germination; it also affected growth directionality and increased branching. The Spitzenkörper of Δcrn-1 mutant was unstable; it appeared and disappeared intermittently giving rise to periods of hyphoid-like and isotropic growth respectively. Uptake of FM4-64 in Δcrn-1 mutant indicated a partial disruption in endocytosis. These observations underscore coronin as an important component of F-actin remodeling in N. crassa. Although coronin is not essential in this fungus, its deletion influenced negatively the operation of the actin cytoskeleton involved in the orderly deployment of the apical growth apparatus, thus preventing normal hyphal growth and morphogenesis. © 2012 Echauri-Espinosa et al.
actin related protein 2-3 complex, F actin, fimbrin protein, fluorescent dye, fungal protein, fungal protein coronin, green fluorescent protein, unclassified drug, actin binding protein, coronin proteins, fungal protein, article, cell polarity, contr BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA MICROBIOLOGÍA MICROBIOLOGÍA