Filtros
Filtrar por:
Tipo de publicación
- Artículo (22)
- Documento de trabajo (4)
- Capítulo de libro (2)
- Artículo (1)
- Libro (1)
Autores
- Tek Sapkota (4)
- Carolina Sansaloni (3)
- Frédéric Baudron (3)
- Juan Burgueño (3)
- Sarrah Ben M'barek (2)
Años de Publicación
Editores
- Universidad Autónoma Metropolitana (México). (2)
- CICESE (1)
- Petra Quillfeldt, Justus Liebig Universitat Giessen, Germany (1)
- Shibu Jose, University of Missouri, United States of America (1)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información. (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (23)
- Repositorio Institucional Zaloamati (4)
- Repositorio Institucional CICESE (3)
- Repositorio IPICYT (1)
- Repositorio Institucional de la Universidad Autónoma de Ciudad Juárez (1)
Tipos de Acceso
- oa:openAccess (32)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (28)
- LANDRACES (8)
- CLIMATE CHANGE (7)
- AGRICULTURE (6)
- DATA ANALYSIS (4)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Worldwide selection footprints for drought and heat in bread wheat (Triticum aestivum L.)
Ana Luisa Gómez Espejo Carolina Sansaloni Juan Burgueño Fernando Henrique Toledo Adalberto Benavides-Mendoza M. Humberto Reyes-Valdés (2022, [Artículo])
Genome–Environment Associations Climatic Variables Hormonal Elicitors CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ADAPTATION DROUGHT STRESS HEAT STRESS LANDRACES TRITICUM AESTIVUM
Tilahun Amede Elizabeth Bailey Abdul Wahab Mossa Dereje Tirfessa MESFIN KEBEDE DESTA Getachew Agegnehu Tesfaye Shiferaw Sida Stephan Haefele R. Murray Lark Martin Broadley Samuel Gameda (2023, [Artículo])
Agronomic biofortification, encompassing the use of mineral and organic nutrient resources which improve micronutrient concentrations in staple crops is a potential strategy to promote the production of and access to micronutrient-dense foods at the farm level. However, the heterogeneity of smallholder farming landscapes presents challenges on implementing agronomic biofortification. Here, we test the effects of zinc (Zn)- and selenium (Se)-containing fertilizer on micronutrient concentrations of wheat (Triticum aestivum L.) and teff (Eragrostis tef (Zucc.) Trotter) grown under different landscape positions and with different micronutrient fertilizer application methods in the western Amhara region of Ethiopia. Field experiments were established in three landscape positions at three sites, with five treatments falling into three broad categories: (1) nitrogen (N) fertilizer rate; (2) micronutrient fertilizer application method; (3) sole or co-application of Zn and Se fertilizer. Treatments were replicated across five farms per landscape position and over two cropping seasons (2018 and 2019). Grain Zn concentration ranged from 26.6 to 36.4 mg kg−1 in wheat and 28.5–31.2 mg kg−1 in teff. Grain Se concentration ranged from 0.02 to 0.59 mg kg−1 in wheat while larger concentrations of between 1.01 and 1.55 mg kg−1 were attained in teff. Larger concentrations of Zn and Se were consistently attained when a foliar fertilizer was applied. Application of ⅓ nitrogen (N) yielded significantly larger grain Se concentration in wheat compared to a recommended N application rate. A moderate landscape effect on grain Zn concentration was observed in wheat but not in teff. In contrast, strong evidence of a landscape effect was observed for wheat and teff grain Se concentration. There was no evidence for any interaction of the treatment contrasts with landscape position except in teff, where an interaction effect between landscape position and Se application was observed. Our findings indicate an effect of Zn, Se, N, landscape position, and its interaction effect with Se on grain micronutrient concentrations. Agronomic biofortification of wheat and teff with micronutrient fertilizers is influenced by landscape position, the micronutrient fertilizer application method and N fertilizer management. The complexity of smallholder environmental settings and different farmer socio-economic opportunities calls for the optimization of nutritional agronomy landscape trials. Targeted application of micronutrient fertilizers across a landscape gradient is therefore required in ongoing agronomic biofortification interventions, in addition to the micronutrient fertilizer application method and the N fertilizer management strategy.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOFORTIFICATION LANDSCAPE SELENIUM ZINC WHEAT
Achla Sharma Juan Burgueño Prashant Vikram Nitika Sandhu Satinder Kaur Parveen Chhuneja (2023, [Artículo])
Plant Nitrogen Use Efficiency Pre-Breeding Lines Genome-Wide Association Study Marker Trait Association CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT PRE-BREEDING BREEDING LINES NITROGEN LANDRACES GENETIC MARKERS
Characterization of Mediterranean durum wheat for resistance to Pyrenophora tritici-repentis
marwa laribi Khaled Sassi Sarrah Ben M'barek (2022, [Artículo])
Tan Spot Durum Wheat Phenotypic Diversity CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SPOTS HARD WHEAT LANDRACES PHENOTYPIC VARIATION PLANT HEIGHT DISEASE RESISTANCE
CAIXIA LAN Ravi Singh JULIO HUERTA_ESPINO Zaifeng Li Evans Lagudah sridhar bhavani (2022, [Artículo])
Genetic Analysis Molecular Mapping Wheat Rusts APR Genes CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ADULT PLANT RESISTANCE LANDRACES WHEAT RUSTS
An updated checklist of plant agrobiodiversity of northern Italy
Marco Canella Nicola Maria Giuseppe Ardenghi Graziano Rossi Filippo Guzzon (2022, [Artículo])
Ex Situ Conservation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ETHNOBOTANY LANDRACES ON-FARM CONSERVATION PLANT GENETIC RESOURCES
marwa laribi Sarrah Ben M'barek Carolina Sansaloni Susanne Dreisigacker (2023, [Artículo])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DISEASE RESISTANCE HARD WHEAT GENETIC DIVERSITY GENOME-WIDE ASSOCIATION STUDIES LANDRACES POPULATION STRUCTURE
Mirja Michalscheck Fred Kizito Carl Timler Jeroen Groot (2023, [Artículo])
Whole-Farm Model Health Shock CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SUSTAINABLE INTENSIFICATION VULNERABILITY SMALLHOLDERS LANDSCAPE TECHNOLOGY
Mining alleles for tar spot complex resistance from CIMMYT's maize Germplasm Bank
Martha Willcox Juan Burgueño Daniel Jeffers Zakaria Kehel Rosemary Shrestha Kelly Swarts Edward Buckler Sarah Hearne Charles Chen (2022, [Artículo])
Maize Landraces Maize Genetic Resources Allelic Diversity Rare Alleles Phenotypic Characterization Tropical Maize Phyllachora maydis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE LANDRACES GENETIC RESOURCES ALLELES FOLIAR DISEASES CLIMATE CHANGE
Do provisioning ecosystem services change along gradients of increasing agricultural production?
Ronju Ahammad Stephanie Tomscha Sarah Gergel Frédéric Baudron Jean-Yves Duriaux Chavarría Samson Foli Dominic Rowland Josh Van Vianen Terence Sunderland (2024, [Artículo])
Context: Increasing agricultural production shapes the flow of ecosystem services (ES), including provisioning services that support the livelihoods and nutrition of people in tropical developing countries. Although our broad understanding of the social-ecological consequences of agricultural intensification is growing, how it impacts provisioning ES is still unknown. Objectives: We examined the household use of provisioning ES across a gradient of increasing agricultural production in seven tropical countries (Bangladesh, Burkina Faso, Cameroon, Ethiopia, Indonesia, Nicaragua and Zambia). We answered two overarching questions: (1) does the use of provisioning ES differ along gradients of agriculture production ranging from zones of subsistence to moderate and to high agriculture production? and (2) are there synergies and/or trade-offs within and among groups of ES within these zones? Methods: Using structured surveys, we asked 1900 households about their assets, livestock, crops, and collection of forest products. These questions allowed us to assess the number of provisioning ES households used, and whether the ES used are functionally substitutable (i.e., used similarly for nutrition, material, and energy). Finally, we explored synergies and trade-offs among household use of provisioning ES. Results: As agricultural production increased, provisioning ES declined both in total number and in different functional groups used. We found more severe decreases in ES for relatively poorer households. Within the functional groups of ES, synergistic relationships were more often found than trade-offs in all zones, including significant synergies among livestock products (dairy, eggs, meat) and fruits. Conclusions: Considering landscape context provides opportunities to enhance synergies among provisioning services for households, supporting resilient food systems and human well-being.
Agricultural Production Zones Agricultural Intensifcation Synergies and Trade-Offs Landscape Multifunctionality Social-Ecological Systems CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE INTENSIFICATION ECOSYSTEM SERVICES LANDSCAPE SOCIAL-ECOLOGICAL RESILIENCE ECOSYSTEM SERVICES