Filtrar por:
Tipo de publicación
- Artículo (36)
- Objeto de congreso (24)
- Documento de trabajo (9)
- Tesis de maestría (6)
- Libro (4)
Autores
- Jelle Van Loon (9)
- ML JAT (7)
- Tek Sapkota (6)
- Paresh Shirsath (4)
- Paswel Marenya (4)
Años de Publicación
Editores
- CICESE (3)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información. (2)
- David Publishing (1)
- Elsevier (1)
- Frontiers Media S.A. (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (66)
- Repositorio institucional del IMTA (6)
- Repositorio Institucional CICESE (3)
- Repositorio Institucional CIBNOR (2)
- Repositorio Institucional Zaloamati (2)
Tipos de Acceso
- oa:openAccess (82)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (68)
- CLIMATE CHANGE (15)
- AGRIFOOD SYSTEMS (12)
- INGENIERÍA Y TECNOLOGÍA (11)
- MAIZE (11)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Angela Meentzen (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENDER EQUALITY FOOD SYSTEMS CLIMATE CHANGE WOMEN'S PARTICIPATION
Market Intelligence insights for groundnut breeding and seed systems in Tanzania
Pieter Rutsaert Kauê De Sousa Jacob van Etten Chris Ojiewo (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MARKET INTELLIGENCE GROUNDNUTS SEED SYSTEMS BREEDING FORAGE SOCIAL STRUCTURE
CCAFS Outcome Synthesis Report:
Mathieu Ouédraogo John Recha Maren Radeny Paresh Shirsath Peter Läderach Osana Bonilla-Findji (2021, [Documento de trabajo])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE-SMART AGRICULTURE INVESTMENT FARMING SYSTEMS CLIMATE CHANGE
Maize seed aid and seed systems development: Opportunities for synergies in Uganda
Jason Donovan Rachel Voss Pieter Rutsaert (2024, [Artículo])
In the name of food security, governments and NGOs purchase large volumes of maize seed in non-relief situations to provide at reduced or no cost to producers. At the same time, efforts to build formal maize seed systems have been frustrated by slow turnover rates – the dominance of older seed products in the market over newer, higher performing ones. Under certain conditions, governments and NGO seed aid purchases can support formal seed systems development in three ways: i) support increased producer awareness of new products, ii) support local private seed industry development, and iii) advance equity goals by targeting aid to the most vulnerable of producers who lack the capacity to purchase seeds. This study explores the objectives and activities of seed aid programmes in Uganda and their interactions with the maize seed sector. We draw insights from interviews with representatives of seed companies, NGOs and government agencies, as well as focus group discussions with producers. The findings indicated that seed aid programme objectives are largely disconnected from broader seed systems development goals. There is little evidence of public-private collaboration in design of these programmes. Better designed programs have the potential to align with varietal turnover objectives, commercial sector development and targeting of underserved markets could promote equity and ‘crowd in’ demand.
Seed Business Varietal Turnover Seed Aid CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SEED SEED SYSTEMS SOCIAL INCLUSION MAIZE
C.M. Parihar Hari Sankar Nayak Dipaka Ranjan Sena Renu Pandey Mahesh Gathala ML JAT (2023, [Artículo])
The Indo-Gangetic Plains (IGP) in north-west (NW) India are facing a severe decline in ground water due to prevalent rice-based cropping systems. To combat this issue, conservation agriculture (CA) with an alternative crop/s, such as maize, is being promoted. Recently, surface drip fertigation has also been evaluated as a viable option to address low-nutrient use efficiency and water scarcity problems for cereals. While the individual benefits of CA and sub-surface drip (SSD) irrigation on water economy are well-established, information regarding their combined effect in cereal-based systems is lacking. Therefore, we conducted a two-year field experiment in maize, under an ongoing CA-based maize-wheat system, to evaluate the complementarity of CA with SSD irrigation through two technological interventions–– CA+ (residue retained CA + SSD), PCA+ (partial CA without residue + SSD) – at different N rates (0, 120 and 150 kg N ha-1) in comparison to traditional furrow irrigated (FI) CA and conventional tillage (CT) at 120 kg N ha-1. Our results showed that CA+ had the highest grain yield (8.2 t ha-1), followed by PCA+ (8.1 t ha-1). The grain yield under CA+ at 150 kg N ha-1 was 27% and 30% higher than CA and CT, respectively. Even at the same N level (120 kg N ha-1), CA+ outperformed CA and CT by 16% and 18%, respectively. The physiological performance of maize also revealed that CA+ based plots with 120 kg N ha-1 had 12% and 3% higher photosynthesis rate at knee-high and silking, respectively compared to FI-CA and CT. Overall, compared to the FI-CA and CT, SSD-based CA+ and PCA+ saved 54% irrigation water and increased water productivity (WP) by more than twice. Similarly, a greater number of split N application through fertigation in PCA+ and CA+ increased agronomic nitrogen use efficiency (NUE) and recover efficiency by 8–19% and 14–25%, respectively. Net returns from PCA+ and CA+ at 150 kg N ha-1 were significantly higher by US$ 491 and 456, respectively than the FI-CA and CT treatments. Therefore, CA coupled with SSD provided tangible benefits in terms of yield, irrigation water saving, WP, NUE and profitability. Efforts should be directed towards increasing farmers’ awareness of the benefits of such promising technology for the cultivating food grains and commercial crops such as maize. Concurrently, government support and strict policies are required to enhance the system adaptability.
Net Returns Subsurface Drip Irrigation Subsurface Drip Fertigation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA EFFICIENCY GRAIN NITROGEN PHOTOSYNTHESIS PHYSIOLOGY WATER SUPPLY CONSERVATION AGRICULTURE CONVENTIONAL TILLAGE FERTIGATION GROUNDWATER NITROGEN-USE EFFICIENCY WATER PRODUCTIVITY
Evan Girvetz Christian Thierfelder Iddo Dror (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE FOOD SYSTEMS DIVERSIFICATION RESILIENCE
MLN disease diagnostics, MLN disease-free seed production and MLN disease management
Suresh L.M. (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DISEASES DISEASE MANAGEMENT SEED PRODUCTION MAIZE NECROSIS YIELD LOSSES ECONOMIC IMPACT SURVEILLANCE SYSTEMS TRAINING
Redesigning crop varieties to win the race between climate change and food security
Kevin Pixley Jill Cairns Santiago Lopez-Ridaura Chris Ojiewo Baloua Nébié Godfrey Asea Biswanath Das Benoit Joseph Batieno Clare Mukankusi Sarah Hearne Kanwarpal Dhugga Sieglinde Snapp Ernesto Adair Zepeda Villarreal (2023, [Artículo])
Crop Breeding Expert Survey CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE CROPPING SYSTEMS FOOD SECURITY CROPS
Review of Nationally Determined Contributions (NCD) of Kenya from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
Agriculture is one of the fundamental pillars of the 2022–2027 Bottom-up Economic Transformation Plan of the Government of Kenya for tackling complex domestic and global challenges. Kenya's food system is crucial for climate change mitigation and adaptation. Kenya has prioritized aspects of agriculture, food, and land use as critical sectors for reducing emissions towards achieving Vision 2030's transformation to a low-carbon, climate-resilient development pathway. Kenya's updated NDC, as well as supporting mitigation and adaptation technical analysis reports and other policy documents, has identified an ambitious set of agroecological transformative measures to promote climate-smart agriculture, regenerative approaches, and nature-positive solutions. Kenya is committed to implementing and updating its National Climate Change Action Plans (NCCAPs) to present and achieve the greenhouse gas (GHG) emission reduction targets and resilience outcomes that it has identified.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES