Búsqueda avanzada


Área de conocimiento




7973 resultados, página 4 de 10

Un registro nuevo para la península de Yucatán y México: Pavonia paludicola (Malvaceae)

GERMAN CARNEVALI FERNANDEZ CONCHA José Luis Tapia Muñoz Ivón Mercedes Ramírez Morillo RODRIGO STEFANO DUNO (2023, [Artículo])

Recientemente se publicó un reporte nuevo de una especie de la misma familia del algodón (Malvaceae), para el estado de Yucatán que resultó también un nuevo registro para la Provincia Biótica Península de Yucatán y para México. Pavonia paludicola se conoce solamente de una población en todo México y está muy cerca del hermoso pueblo de Dzilam de Bravo. En este texto se resume este descubrimiento.

DZILAM DE BRAVO MALVOIDEAE MEXICO NOVEDAD FLORISTICA YUCATAN BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) TAXONOMÍA VEGETAL TAXONOMÍA VEGETAL

La diversidad funcional en el calichal yucateco: una estrategia que permite entender su riqueza desde una perspectiva ecológica

Mayte Aguilar RODRIGO STEFANO DUNO DIEGO FRANCISCO ANGULO PEREZ (2022, [Artículo])

La huella ecológica y el impacto de las acciones humanas han afectado gravemente los ecosistemas y estamos lejos de entender la complejidad que contienen, así como el papel de las especies que los integran. Este ensayo ilustra la diversidad funcional como una estrategia crítica a los estudios de biodiversidad, ya que nos permite entender la riqueza desde una perspectiva ecológica y evolutiva. Es urgente conocer nuestros ecosistemas para establecer estrategias de conservación eficaces, y la diversidad funcional representa una herramienta útil para lograr dicho objetivo.

ADAPTACION ECOLOGICA COMUNIDAD FILTROS AMBIENTALES RASGOS FUNCIONALES MEXICO YUCATAN BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL

La historia detrás de Gonolobus caamali (Apocynaceae), endémica de la península de Yucatán

GERMAN CARNEVALI FERNANDEZ CONCHA GUSTAVO ADOLFO ROMERO GONZALEZ José Luis Tapia Muñoz Ivón Mercedes Ramírez Morillo CLAUDIA JANETH RAMIREZ DIAZ William Rolando Cetzal Ix RODRIGO STEFANO DUNO KATYA JEANNETH ROMERO SOLER (2022, [Artículo])

Publicar una especie nueva para la ciencia es siempre una tarea interesante y retadora, sobre todo en los tiempos modernos, donde la comunidad de sistemáticos de plantas y las revistas científicas exigen investigaciones de biología comparada más completas, integrando diferentes fuentes de evidencia (morfológica y molecular), más allá de una simple descripción morfológica. Esta historia comenzó hace más de 15 años y terminó este año, cuando Gonolobus caamali Carnevali & R. Duno (Apocynaceae), fue descrita como una nueva especie para la ciencia. Presentamos aquí algunos detalles de esta especie.

ASCLEPIADOIDEAE EXTINCION MEXICO NOVEDAD TAXONOMICA YUCATAN BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) TAXONOMÍA VEGETAL TAXONOMÍA VEGETAL

Parques vemos, biodiversidad no sabemos: el caso de la herpetofauna de la ciudad de Mérida

Roberto Carlos Barrientos Medina (2023, [Artículo])

La herpetofauna, constituida por las diferentes especies de anfibios y reptiles que se pueden encontrar en un hábitat, es un buen grupo indicador de diversidad, ya que presenta características de movilidad que los hacen ser más dependientes del hábitat (lugar en el que viven). En este trabajo se analizan los patrones de diversidad de los anfibios y reptiles que se pueden encontrar en los parques ecológicos de Mérida, en distintos niveles de expresión (alfa, beta y gamma). Los resultados señalan la influencia del grado de urbanización, de acuerdo con los patrones encontrados en las diversidades beta y gamma.

AMBIENTES ANTROPIZADOS ECOLOGIA URBANA NIVELES DE DIVERSIDAD PATRONES ECOLOGICOS YUCATAN BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA ANIMAL (ZOOLOGÍA) HERPETOLOGÍA HERPETOLOGÍA

Big data, small explanatory and predictive power: Lessons from random forest modeling of on-farm yield variability and implications for data-driven agronomy

Martin van Ittersum (2023, [Artículo])

Context: Collection and analysis of large volumes of on-farm production data are widely seen as key to understanding yield variability among farmers and improving resource-use efficiency. Objective: The aim of this study was to assess the performance of statistical and machine learning methods to explain and predict crop yield across thousands of farmers’ fields in contrasting farming systems worldwide. Methods: A large database of 10,940 field-year combinations from three countries in different stages of agricultural intensification was analyzed. Random effects models were used to partition crop yield variability and random forest models were used to explain and predict crop yield within a cross-validation scheme with data re-sampling over space and time. Results: Yield variability in relative terms was smallest for wheat and barley in the Netherlands and for wheat in Ethiopia, intermediate for rice in the Philippines, and greatest for maize in Ethiopia. Random forest models comprising a total of 87 variables explained a maximum of 65 % of cereal yield variability in the Netherlands and less than 45 % of cereal yield variability in Ethiopia and in the Philippines. Crop management related variables were important to explain and predict cereal yields in Ethiopia, while predictive (i.e., known before the growing season) climatic variables and explanatory (i.e., known during or after the growing season) climatic variables were most important to explain and predict cereal yield variability in the Philippines and in the Netherlands, respectively. Finally, model cross-validation for regions or years not seen during model training reduced the R2 considerably for most crop x country combinations, while for wheat in the Netherlands this was model dependent. Conclusion: Big data from farmers’ fields is useful to explain on-farm yield variability to some extent, but not to predict it across time and space. Significance: The results call for moderate expectations towards big data and machine learning in agronomic studies, particularly for smallholder farms in the tropics where model performance was poorest independently of the variables considered and the cross-validation scheme used.

Model Accuracy Model Precision Linear Mixed Models CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MACHINE LEARNING SUSTAINABLE INTENSIFICATION BIG DATA YIELDS MODELS AGRONOMY