Filtros
Filtrar por:
Tipo de publicación
- Artículo (2)
Autores
- Fernando Aramburu Merlos (1)
- Frédéric Baudron (1)
- João Vasco Silva (1)
- Moti Jaleta (1)
- Robert Hijmans (1)
Años de Publicación
- 2023 (2)
Editores
Repositorios Orígen
Tipos de Acceso
- oa:openAccess (2)
Idiomas
- eng (2)
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (2)
- LIMES (2)
- ACID SOILS (1)
- ALUMINIUM (1)
- Aluminum Saturation (1)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
2 resultados, página 1 de 1
Estimating lime requirements for tropical soils: Model comparison and development
Fernando Aramburu Merlos João Vasco Silva Frédéric Baudron Robert Hijmans (2023, [Artículo])
Acid tropical soils may become more productive when treated with agricultural lime, but optimal lime rates have yet to be determined in many tropical regions. In these regions, lime rates can be estimated with lime requirement models based on widely available soil data. We reviewed seven of these models and introduced a new model (LiTAS). We evaluated the models’ ability to predict the amount of lime needed to reach a target change in soil chemical properties with data from four soil incubation studies covering 31 soil types. Two foundational models, one targeting acidity saturation and the other targeting base saturation, were more accurate than the five models that were derived from them, while the LiTAS model was the most accurate. The models were used to estimate lime requirements for 303 African soil samples. We found large differences in the estimated lime rates depending on the target soil chemical property of the model. Therefore, an important first step in formulating liming recommendations is to clearly identify the soil property of interest and the target value that needs to be reached. While the LiTAS model can be useful for strategic research, more information on acidity-related problems other than aluminum toxicity is needed to comprehensively assess the benefits of liming.
Exchangeable Acidity Aluminum Saturation Calcium Carbonate Equivalent CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CHEMICOPHYSICAL PROPERTIES LIMES TROPICAL ZONES ACID SOILS ALUMINIUM BASE SATURATION CALCIUM CARBONATE
Agricultural lime value chain efficiency for reducing soil acidity in Ethiopia
Moti Jaleta (2023, [Artículo])
Soil acidity is challenging agricultural production in Ethiopia. Above 43% of the farmland is under soil acidity problem and it leads to low crop yields and production losses. Ag-lime is widely considered as an effective remedy for amending soil acidity. This study assesses the current structure of ag-lime value chain and its functionality focusing on central parts of Ethiopia where lime is produced and channeled to acidity affected areas. The study uses Ethiopia as a case study and applies qualitative methods such as key informant interviews and focus group discussions to collect data from different actors in the ag-lime value chain. Key findings indicate that both public and private ag-lime producing factories are operating below their capacity. Due to limited enabling environments, the engagement of private sector in ag-lime value chain is minimal. In addition, farmers have a good awareness of soil acidity problem on their farms, and its causes and mitigation strategies in all regions. However, the adoption of ag-lime by smallholders was minimal. Overall, the current structure of the ag-lime value chain appears fragmented and needs improvement. Addressing soil acidity challenge through efficient ag-lime value chain could narrow lime supply-demand mismatches and increase widespread adoption by farmers to enhance crop productivity and food security in acidity-prone areas of the country.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA LIMES PRODUCTION COSTS VALUE CHAINS SOIL PH