Búsqueda avanzada


Área de conocimiento




73 resultados, página 4 de 8

Application of ammonium to a N limited arable soil enriches a succession of bacteria typically found in the rhizosphere

Yendi Navarro-Noya Marco Luna_Guido Nele Verhulst Bram Govaerts Luc Dendooven (2022, [Artículo])

Crop residue management and tillage are known to affect the soil bacterial community, but when and which bacterial groups are enriched by application of ammonium in soil under different agricultural practices from a semi-arid ecosystem is still poorly understood. Soil was sampled from a long-term agronomic experiment with conventional tilled beds and crop residue retention (CT treatment), permanent beds with crop residue burned (PBB treatment) or retained (PBC) left unfertilized or fertilized with 300 kg urea-N ha-1 and cultivated with wheat (Triticum durum L.)/maize (Zea mays L.) rotation. Soil samples, fertilized or unfertilized, were amended or not (control) with a solution of (NH4)2SO4 (300 kg N ha-1) and were incubated aerobically at 25 ± 2 °C for 56 days, while CO2 emission, mineral N and the bacterial community were monitored. Application of NH4+ significantly increased the C mineralization independent of tillage-residue management or N fertilizer. Oxidation of NH4+ and NO2- was faster in the fertilized soil than in the unfertilized soil. The relative abundance of Nitrosovibrio, the sole ammonium oxidizer detected, was higher in the fertilized than in the unfertilized soil; and similarly, that of Nitrospira, the sole nitrite oxidizer. Application of NH4+ enriched Pseudomonas, Flavisolibacter, Enterobacter and Pseudoxanthomonas in the first week and Rheinheimera, Acinetobacter and Achromobacter between day 7 and 28. The application of ammonium to a soil cultivated with wheat and maize enriched a sequence of bacterial genera characterized as rhizospheric and/or endophytic independent of the application of urea, retention or burning of the crop residue, or tillage.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AMMONIUM CROP RESIDUES WHEAT MAIZE TILLAGE SOIL

High spatial resolution seasonal crop yield forecasting for heterogeneous maize environments in Oromia, Ethiopia

Kindie Tesfaye Vakhtang Shelia Pierre C. Sibiry Traore Dawit Solomon Gerrit Hoogenboom (2023, [Artículo])

Seasonal climate variability determines crop productivity in Ethiopia, where rainfed smallholder farming systems dominate in the agriculture production. Under such conditions, a functional and granular spatial yield forecasting system could provide risk management options for farmers and agricultural and policy experts, leading to greater economic and social benefits under highly variable environmental conditions. Yet, there are currently only a few forecasting systems to support early decision making for smallholder agriculture in developing countries such as Ethiopia. To address this challenge, a study was conducted to evaluate a seasonal crop yield forecast methodology implemented in the CCAFS Regional Agricultural Forecasting Toolbox (CRAFT). CRAFT is a software platform that can run pre-installed crop models and use the Climate Predictability Tool (CPT) to produce probabilistic crop yield forecasts with various lead times. Here we present data inputs, model calibration, evaluation, and yield forecast results, as well as limitations and assumptions made during forecasting maize yield. Simulations were conducted on a 0.083° or ∼ 10 km resolution grid using spatially variable soil, weather, maize hybrids, and crop management data as inputs for the Cropping System Model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT). CRAFT combines gridded crop simulations and a multivariate statistical model to integrate the seasonal climate forecast for the crop yield forecasting. A statistical model was trained using 29 years (1991–2019) data on the Nino-3.4 Sea surface temperature anomalies (SSTA) as gridded predictors field and simulated maize yields as the predictand. After model calibration the regional aggregated hindcast simulation from 2015 to 2019 performed well (RMSE = 164 kg/ha). The yield forecasts in both the absolute and relative to the normal yield values were conducted for the 2020 season using different predictor fields and lead times from a grid cell to the national level. Yield forecast uncertainties were presented in terms of cumulative probability distributions. With reliable data and rigorous calibration, the study successfully demonstrated CRAFT's ability and applicability in forecasting maize yield for smallholder farming systems. Future studies should re-evaluate and address the importance of the size of agricultural areas while comparing aggregated simulated yields with yield data collected from a fraction of the target area.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP MODELLING DECISION SUPPORT SYSTEMS FORECASTING MAIZE

Alternative cropping and feeding options to enhance sustainability of mixed crop-livestock farms in Bangladesh

Timothy Joseph Krupnik Jeroen Groot (2024, [Artículo])

We investigated alternative cropping and feeding options for large (>10 cows), medium (5–10 cows) and small (≤4 cows) mixed crop – livestock farm types, to enhance economic and environmental performance in Jhenaidha and Meherpur districts – locations with increasing dairy production – in south western Bangladesh. Following focus group discussions with farmers on constraints and opportunities, we collected baseline data from one representative farm from each farm size class per district (six in total) to parameterize the whole-farm model FarmDESIGN. The six modelled farms were subjected to Pareto-based multi-objective (differential evolution algorithm) optimization to generate alternative dairy farm and fodder configurations. The objectives were to maximize farm profit, soil organic matter balance, and feed self-reliance, in addition to minimizing feed costs and soil nitrogen losses as indicators of sustainability. The cropped areas of the six baseline farms ranged from 0.6 to 4.0 ha and milk production per cow was between 1,640 and 3,560 kg year−1. Feed self-reliance was low (17%–57%) and soil N losses were high (74–342 kg ha−1 year−1). Subsequent trade-off analysis showed that increasing profit and soil organic matter balance was associated with higher risks of N losses. However, we found opportunities to improve economic and environmental performance simultaneously. Feed self-reliance could be increased by intensifying cropping and substituting fallow periods with appropriate fodder crops. For the farm type with the largest opportunity space and room to manoeuvre, we identified four strategies. Three strategies could be economically and environmentally benign, showing different opportunities for farm development with locally available resources.

Ruminant Feed Pareto-Based Optimization Farm Bioeconomic Model CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RUMINANT FEEDING BIOECONOMIC MODELS MIXED CROPPING FARMS LIVESTOCK

Multicriteria assessment of alternative cropping systems at farm level. A case with maize on family farms of South East Asia

Santiago Lopez-Ridaura (2023, [Artículo])

CONTEXT: Integration of farms into markets with adoption of maize as a cash crop can significantly increase income of farms of the developing world. However, in some cases, the income generated may still be very low and maize production may also have strong negative environmental and social impacts. OBJECTIVE: Maize production in northern Laos is taken as a case to study how far can farms' performance be improved with improved crop management of maize with the following changes at field level: good timing and optimal soil preparation and sowing, allowing optimal crop establishment and low weed infestation. METHODS: We compared different farm types' performance on locally relevant criteria and indicators embodying the three pillars of sustainability (environmental, economic and social). An integrated assessment approach was combined with direct measurement of indicators in farmers' fields to assess eleven criteria of local farm sustainability. A bio-economic farm model was used for scenario assessment in which changes in crop management and the economic environment of farms were compared to present situation. The farm model was based on mathematical programming maximizing income under constraints related to i) household composition, initial cash and rice stocks and land type, and ii) seasonal balances of cash, labour and food. The crop management scenarios were built based on a diagnosis of the causes of variations in the agronomic and environmental performances of cropping systems, carried out in farmers' fields. RESULTS AND CONCLUSIONS: Our study showed that moderate changes in crop management on maize would improve substantially farm performance on 4 to 6 criteria out of the 11 assessed, depending on farm types. The improved crop management of maize had a high economic attractiveness for every farm type simulated (low, medium and high resource endowed farms) even at simulated production costs more than doubling current costs of farmers' practices. However, while an improvement of the systems performance was attained in terms of agricultural productivity, income generation, work and ease of work, herbicide leaching, improved soil quality and nitrogen balance, trade-offs were identified with other indicators such as erosion control and cash outflow needed at the beginning of the cropping season. SIGNIFICANCE: Using farm modelling for multicriteria assessment of current and improved maize cropping systems for contrasted farm types helped capture main opportunities and constraints on local farm sustainability, and assess the trade-offs that new options at field level may generate at farm level.

Bio-Economic Farm Model Smallholder Farms CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CASH CROPS INDICATORS SMALLHOLDERS CROPPING SYSTEMS MAIZE

Impact of manures and fertilizers on yield and soil properties in a rice-wheat cropping system

Alison Laing Akbar Hossain (2023, [Artículo])

The use of chemical fertilizers under a rice-wheat cropping system (RWCS) has led to the emergence of micronutrient deficiency and decreased crop productivity. Thus, the experiment was conducted with the aim that the use of organic amendments would sustain productivity and improve the soil nutrient status under RWCS. A three-year experiment was conducted with different organic manures i.e. no manure (M0), farmyard manure@15 t ha-1 (M1), poultry manure@6 t ha-1(M2), press mud@15 t ha-1(M3), rice straw compost@6 t ha-1(M4) along with different levels of the recommended dose of fertilizer (RDF) i.e. 0% (F1), 75% (F2 and 100% (F3 in a split-plot design with three replications and plot size of 6 m x 1.2 m. Laboratory-based analysis of different soil as well as plant parameters was done using standard methodologies. The use of manures considerably improved the crop yield, macronutrients viz. nitrogen, phosphorus, potassium and micronutrients such as zinc, iron, manganese and copper, uptake in both the crops because of nutrient release from decomposed organic matter. Additionally, the increase in fertilizer dose increased these parameters. The system productivity was maximum recorded under F3M1 (13,052 kg ha-1) and results were statistically identical with F3M2 and F3M3. The significant upsurge of macro and micro-nutrients in soil and its correlation with yield outcomes was also observed through the combined use of manures as well as fertilizers. This study concluded that the use of 100% RDF integrated with organic manures, particularly farmyard manure would be a beneficial resource for increased crop yield, soil nutrient status and system productivity in RWCS in different regions of India.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ORGANIC FERTILIZERS YIELDS SOIL PROPERTIES RICE WHEAT CROPPING SYSTEMS