Filtros
Filtrar por:
Tipo de publicación
- Artículo (118)
- Objeto de congreso (17)
- Tesis de maestría (14)
- Libro (8)
- Documento de trabajo (7)
Autores
- Christian Thierfelder (4)
- Tek Sapkota (4)
- Anil Pimpale (3)
- Carlo Montes (3)
- Jonathan Gabriel Escobar Flores (3)
Años de Publicación
Editores
- CICESE (7)
- Universidad Autónoma de Ciudad Juárez. Instituto de Arquitectura, Diseño y Arte (4)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información. (3)
- Centro de Investigaciones Biológicas del Noroeste, S. C. (2)
- Latin American Journal of Aquatic Research (2)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (73)
- Repositorio Institucional CICESE (43)
- Repositorio Institucional CIBNOR (27)
- Repositorio Institucional CICY (12)
- Repositorio Institucional Zaloamati (6)
Tipos de Acceso
- oa:openAccess (173)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (89)
- BIOLOGÍA Y QUÍMICA (47)
- CIENCIAS DE LA VIDA (47)
- CLIMATE CHANGE (39)
- BIOLOGÍA ANIMAL (ZOOLOGÍA) (35)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Manejo de pasturas para la crianza de llamas
Santiago Lopez-Ridaura Ravi Gopal Singh (2022, [Libro])
Pasturas CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURA DE CONSERVACIÓN GANADERÍA ARBUSTOS LEGUMINOSAS FORRAJES PASTOREO SUELO CAMBIO CLIMÁTICO CONSERVATION AGRICULTURE ANIMAL HUSBANDRY SHRUBS LEGUMES FORAGE GRAZING SOIL CLIMATE CHANGE LLAMAS AGACHO
Tirthankar Bandyopadhyay Stéphanie M. Swarbreck Vandana Jaiswal Rajeev Gupta Alison Bentley Manoj Prasad (2022, [Artículo])
C4 Model Crop Climate Resilience CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE RESILIENCE FOOD SECURITY GENE EXPRESSION NITROGEN
Women, economic resilience, gender norms in a time of climate change: what do we know?
Cathy Farnworth Anne Rietveld Rachel Voss Angela Meentzen (2023, [Artículo])
This literature delves into 82 research articles, published between 2016 and 2022, to develop a deep understanding of how women manage their lives and livelihoods within their agrifood systems when these systems are being affected, sometimes devastatingly, by climate change. The Findings show that four core gender norms affect the ability of women to achieve economic resilience in the face of climate change operate in agrifood production systems. Each of these gender norms speaks to male privilege: (i) Men are primary decision-makers, (ii) Men are breadwinners, (iii) Men control assets, and (iv) Men are food system actors. These gender norms are widely held and challenge women’s abilities to become economically resilient. These norms are made more powerful still because they fuse with each other and act on multiple levels, and they serve to support other norms which limit women’s scope to act. It is particularly noteworthy that many institutional actors, ranging from community decision-makers to development partners, tend to reinforce rather than challenge gender norms because they do not critically review their own assumptions.
However, the four gender norms cited are not hegemonic. First, there is limited and intriguing evidence that intersectional identities can influence women’s resilience in significant ways. Second, gender norms governing women’s roles and power in agrifood systems are changing in response to climate change and other forces, with implications for how women respond to future climate shocks. Third, paying attention to local realities is important – behaviours do not necessarily substantiate local norms. Fourth, women experience strong support from other women in savings groups, religious organisations, reciprocal labour, and others. Fifth, critical moments, such as climate disasters, offer potentially pivotal moments of change which could permit women unusually high levels of agency to overcome restrictive gender norms without being negatively sanctioned. The article concludes with recommendations for further research.
Economic Resilience Intersectional Identities Women Groups Support CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ECONOMICS RESILIENCE CLIMATE CHANGE GENDER NORMS AGRIFOOD SYSTEMS WOMEN
The impact of 1.5 °C and 2.0 °C global warming on global maize production and trade
Wei Xiong Tariq Ali (2022, [Artículo])
Future Climate Scenario Data Yield Reduction Risk CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE EFFECT MAIZE MITIGATION SIMULATION ACCLIMATIZATION ADAPTATION GLOBAL WARMING
Arbustos y pastos para restablecer la cobertura vegetal en zonas áridas del Sur de Bolivia
Santiago Lopez-Ridaura Ravi Gopal Singh (2022, [Libro])
Pastos CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURA DE CONSERVACIÓN SUELO COBERTURA DE SUELOS FERTILIDAD DEL SUELO CAMBIO CLIMÁTICO GANADERÍA VEGETACIÓN ARBUSTOS CONSERVATION AGRICULTURE SOIL LAND COVER CLIMATE CHANGE ANIMAL HUSBANDRY VEGETATION SHRUBS
Review of Nationally Determined Contributions (NCD) of Kenya from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
Agriculture is one of the fundamental pillars of the 2022–2027 Bottom-up Economic Transformation Plan of the Government of Kenya for tackling complex domestic and global challenges. Kenya's food system is crucial for climate change mitigation and adaptation. Kenya has prioritized aspects of agriculture, food, and land use as critical sectors for reducing emissions towards achieving Vision 2030's transformation to a low-carbon, climate-resilient development pathway. Kenya's updated NDC, as well as supporting mitigation and adaptation technical analysis reports and other policy documents, has identified an ambitious set of agroecological transformative measures to promote climate-smart agriculture, regenerative approaches, and nature-positive solutions. Kenya is committed to implementing and updating its National Climate Change Action Plans (NCCAPs) to present and achieve the greenhouse gas (GHG) emission reduction targets and resilience outcomes that it has identified.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES
Agricultura, agua y cambio climático en zonas áridas de México
SALVADOR EMILIO LLUCH COTA JUAN ALBERTO VELAZQUEZ ZAPATA César Nieto Delgado (2022, [Artículo])
"En este artículo se expone cómo a pesar de que la ciencia y la tecnología han permitido aumentar históricamente la productividad agrícola, hoy día existen grandes retos derivados del cambio climático y la crisis global de abastecimiento de agua. Se comentan algunas medidas de adaptación y manejo del recurso agua, con algunas referencias a nuestra realidad nacional, y se argumenta cómo el enfoque de Nexo, que implica la toma de decisiones sobre el uso del recurso agua de forma transectorial, representa una alternativa de adaptación al cambio climático."
Cambio climático, agricultura, agua, Nexo, adaptación Climate change, agriculture, water, nexus, adaptation CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO CLIMATOLOGÍA CLIMATOLOGÍA REGIONAL CLIMATOLOGÍA REGIONAL
Tek Sapkota (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE STRATEGIES CLIMATE CHANGE IMPACT FOOD SECURITY FOOD SYSTEMS CLIMATE-SMART AGRICULTURE SUSTAINABLE INTENSIFICATION CONSERVATION AGRICULTURE SMALLHOLDERS
Elio Guarionex Lagunes Díaz María Eugenia González Rosende Alfredo Ortega Rubio (2015, [Artículo])
"En los estados del sur de México, entre un 25% y un 55% de los hogares dependen de la leña para cocinar, lo cual trae consecuencias en el ambiente, el desarrollo y la salud. No obstante, el conocimiento de estas consecuencias y la migración hacia combustibles modernos ha permanecido relegada de las políticas de desarrollo. En este trabajo, partiendo de una descripción del panorama de uso de leña en el país y su importancia como fuente de energía, se presenta una aproximación para estimar ahorros en emisiones de CO2 logrables por la transición a gas licuado a presión (GLP), los cuales pueden alcanzar 3.14 Mt CO2e, 26% menos que el escenario base. Se finaliza con una discusión de la transición hacia combustibles modernos, las barreras que la impiden y los logros y fallos de la distribución de estufas ahorradoras de leña, la principal iniciativa gubernamental para aliviar el consumo de leña en el país."
"Between 25% and 55% of households in southern Mexico depend on biomass for cooking, which carries serious consequences on the environment, development and health. In spite of the knowledge of these consequences, transition from biomass to modern fuels has remained outside energy and development policies. In the present work, after describing the panorama of fuelwood use in the country and its importance as an energy source, an approach is presented for estimating CO2 savings achievable by transition to pressurized liquefied gas (LP). These savings can reach 3.14 Mt CO2e, 26% less than the baseline scenario. At the end we discuss on the transition to modern fuels in Mexico, the barriers that hinder it and the achievements and failures of the distribution of fuelwood saving cookstoves, as the only and most important governmental initiative to alleviate biomass use, comparing it with other priorities in the government's agenda."
Transición energética, cambio climático, política energética. Energy transition, climate change, energy policy. CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO METEOROLOGÍA CONTAMINACIÓN ATMOSFÉRICA CONTAMINACIÓN ATMOSFÉRICA
Review of Nationally Determined Contributions (NCD) of China from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
China is the largest emitter of greenhouse gases (GHG) and one of the countries most affected by climate change. China's food systems are a major contributor to climate change: in 2018, China's food systems emitted 1.09 billion tons of carbondioxide equivalent (CO2eq) GHGs, accounting for 8.2% of total national GHG emissions and 2% of global emissions. According to the Third National Communication (TNC) Report, in 2010, GHG emissions from energy, industrial processes, agriculture, and waste accounted for 78.6%, 12.3%, 7.9%, and 1.2% of total emissions, respectively, (excluding emissions from land use, land-use change and forestry (LULUCF). Total GHG emissions from the waste sector in 2010 were 132 Mt CO2 eq, with municipal solid waste landfills accounting for 56 Mt. The average temperature in China has risen by 1.1°C over the last century (1908–2007), while nationally averaged precipitation amounts have increased significantly over the last 50 years. The sea level and sea surface temperature have risen by 90 mm and 0.9°C respectively in the last 30 years. A regional climate model predicted an annual mean temperature increase of 1.3–2.1°C by 2020 (2.3–3.3°C by 2050), while another model predicted a 1–1.6°C temperature increase and a 3.3–3.7 percent increase in precipitation between 2011 and 2020, depending on the emissions scenario. By 2030, sea level rise along coastal areas could be 0.01–0.16 meters, increasing the likelihood of flooding and intensified storm surges and causing the degradation of wetlands, mangroves, and coral reefs. Addressing climate change is a common human cause, and China places a high value on combating climate change. Climate change has been incorporated into national economic and social development plans, with equal emphasis on mitigation and adaptation to climate change, including an updated Nationally Determined Contribution (NDC) in 2021. The following overarching targets are included in China's updated NDC: • Peaking carbon dioxide emissions “before 2030” and achieving carbon neutrality before 2060. • Lowering carbon intensity by “over 65%” by 2030 from the 2005 level. • Increasing forest stock volume by around 6 billion cubic meters in 2030 from the 2005 level. The targets have come from several commitments made at various events, while China has explained very well the process adopted to produce its third national communication report. An examination of China's NDC reveals that it has failed to establish quantifiable and measurable targets in the agricultural sectors. According to the analysis of the breakdown of food systems and their inclusion in the NDC, the majority of food system activities are poorly mentioned. China's interventions or ambitions in this sector have received very little attention. The adaptation component is mentioned in the NDC, but is not found to be sector-specific or comprehensive. A few studies have rated the Chinese NDC as insufficient, one of the reasons being its failure to list the breakdown of each sector's clear pathway to achieving its goals. China's NDC lacks quantified data on food system sub-sectors. Climate Action Trackers' "Insufficient" rating indicates that China's domestic target for 2030 requires significant improvements to be consistent with the Paris Agreement's target of 1.5°C temperature limit. Some efforts are being made: for example, scientists from the Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (IEDA-CAAS) have developed methods for calculating GHG emissions from livestock and poultry farmers that have been published as an industrial standard by the Ministry of Agriculture and Rural Affairs, PRC (Prof Hongmin Dong, personal communication) but this still needs to be consolidated and linked to China’s NDC. The updated Nationally Determined Contributions fall short of quantifiable targets in agriculture and food systems as a whole, necessitating clear pathways. China's NDC is found to be heavily focused on a few sectors, including energy, transportation, and urban-rural development. The agricultural sectors' and food systems' targets are vague, and China's agrifood system has a large carbon footprint. As a result, China should focus on managing the food system (production, processing, transportation, and food waste management) to reduce carbon emissions. Furthermore, China should take additional measures to make its climate actions more comprehensive, quantifiable, and measurable, such as setting ambitious and clear targets for the agriculture sector, including activity-specific GHG-reduction pathways; prioritizing food waste and loss reduction and management; promoting sustainable livestock production and low carbon diets; reducing chemical pollution; minimizing the use of fossil fuel in the agri-system and focusing on developing green jobs, technological advancement and promoting climate-smart agriculture; promoting indigenous practices and locally led adaptation; restoring degraded agricultural soils and enhancing cooperation and private partnership. China should also prepare detailed NDC implementation plans including actions and the GHG reduction from conditional targets.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GREENHOUSE GAS EMISSIONS CLIMATE CHANGE FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES