Título

REAL TIME EMBBEDED RGB-D SLAM USING CNNS FOR DEPTH ESTIMATION AND FEATURE EXTRACTION

Autor

Marcos Renato Rocha Hernández

Colaborador

Gerardo Flores (Asesor de tesis)

Nivel de Acceso

Acceso Abierto

Resumen o descripción

"A robust and efficient Simultaneous Localization and Mapping (SLAM) system is essential for intelligent mobile robots to work in unknown environments. For visual SLAM algorithms, though the theoretical framework has been well established for most aspects, feature extraction and association is still empirically de signed in most cases, and can be vulnerable in complex environments. Also, most of the most robust SLAM algorithms rely on special devices like a stereo camera or depth sensors, which can be expensive and give more complexity to the system, that is why monocular depth estimation is an essential task in the computer vision community. This work shows that feature extraction and depth estimation using a monocular camera with deep convolutional neural networks (CNNs) can be incorporated into a modern SLAM framework. The proposed SLAM system utilizes two CNNs, one to detect keypoints in each im age frame, and to give not only keypoint descriptors, but also a global descriptor of the whole image and the second one to make depth estimations from a single image frame, all using only a monocular camera."

Fecha de publicación

marzo de 2023

Tipo de publicación

Tesis de maestría

Versión de la publicación

Versión aceptada

Formato

application/pdf

Idioma

Inglés

Cobertura

León, Guanajuato

Audiencia

Bibliotecarios

Estudiantes

Investigadores

Público en general

Sugerencia de citación

Rocha-Hernández, (2023). "Real time embedded RGB-D slam using CNNS for depth estimation and feature extraction". Tesis de Maestría Interinstitucional en Ciencia y Tecnología. Centro de Investigaciones en Óptica, A.C. León, Guanajuato, México. 52 páginas.

Repositorio Orígen

REPOSITORIO INSTITUCIONAL DEL CIO

Descargas

55

Comentarios



Necesitas iniciar sesión o registrarte para comentar.