Búsqueda avanzada


Área de conocimiento




172 resultados, página 1 de 10

The banana MaWRKY18, MaWRKY45, MaWRKY60 and MaWRKY70 genes encode functional transcription factors and display differential expression in response to defense phytohormones

SERGIO GARCIA LAYNES VIRGINIA AURORA HERRERA VALENCIA Lilia Guadalupe Tamayo Torres VERONICA LIMONES BRIONES FELIPE ALONSO BARREDO POOL FRAY MARTIN BAAS ESPINOLA Angel Alpuche-Solis CARLOS ALBERTO PUCH HAU SANTY PERAZA ECHEVERRIA (2022, [Artículo])

WRKY transcription factors (TFs) play key roles in plant defense responses through phytohormone signaling pathways. However, their functions in tropical fruit crops, especially in banana, remain largely unknown. Several WRKY genes from the model plants rice (OsWRKY45) and Arabidopsis (AtWRKY18, AtWRKY60, AtWRKY70) have shown to be attractive TFs for engineering disease resistance. In this study, we isolated four banana cDNAs (MaWRKY18, MaWRKY45, MaWRKY60, and MaWRKY70) with homology to these rice and Arabidopsis WRKY genes. The MaWRKY cDNAs were isolated from the wild banana Musa acuminata ssp. malaccensis, which is resistant to several diseases of this crop and is a progenitor of most banana cultivars. The deduced amino acid sequences of the four MaWRKY cDNAs revealed the presence of the conserved WRKY domain of ~60 amino acids and a zinc-finger motif at the N-terminus. Based on the number of WRKY repeats and the structure of the zinc-finger motif, MaWRKY18 and MaWRKY60 belong to group II of WRKY TFs, while MaWRKY45 and MaWRKY70 are members of group III. Their corresponding proteins were located in the nuclei of onion epidermal cells and were shown to be functional TFs in yeast cells. Moreover, expression analyses revealed that the majority of these MaWRKY genes were upregulated by salicylic acid (SA) or methyl jasmonate (MeJA) phytohormones, although the expression levels were relatively higher with MeJA treatment. The fact that most of these banana WRKY genes were upregulated by SA or MeJA, which are involved in systemic acquired resistance (SAR) or induced systemic resistance (ISR), respectively, make them interesting candidates for bioengineering broad-spectrum resistance in this crop. © 2022 by the authors.

BANANA TRANSCRIPTION FACTOR WRKY DEFENSE PHYTOHORMONES SALICYLIC ACID METHYL JASMONATE SAR ISR BROAD-SPECTRUM RESISTANCE BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA GENÉTICA GENÉTICA MOLECULAR DE PLANTAS GENÉTICA MOLECULAR DE PLANTAS

Solanum tuberosum Microtuber Development under Darkness Unveiled through RNAseq Transcriptomic Analysis

ELIANA VALENCIA LOZANO LISSET HERRERA ISIDRON Osiel Salvador Recoder-Meléndez Aarón Barraza Celis JOSE LUIS CABRERA PONCE (2022, [Artículo])

"Potato microtuber (MT) development through in vitro techniques are ideal propagules for producing high quality potato plants. MT formation is influenced by several factors, i.e., photoperiod, sucrose, hormones, and osmotic stress. We have previously developed a protocol of MT induction in medium with sucrose (8% w/v), gelrite (6g/L), and 2iP as cytokinin under darkness. To understand the molecular mechanisms involved, we performed a transcriptome-wide analysis. Here we show that 1715 up- and 1624 down-regulated genes were involved in this biological process. Through the protein–protein interaction (PPI) network analyses performed in the STRING database (v11.5), we found 299 genes tightly associated in 14 clusters. Two major clusters of up-regulated proteins fundamental for life growth and development were found: 29 ribosomal proteins (RPs) interacting with 6 PEBP family members and 117 cell cycle (CC) proteins. The PPI network of up-regulated transcription factors (TFs) revealed that at least six TFs–MYB43, TSF, bZIP27, bZIP43, HAT4 and WOX9–may be involved during MTs development. The PPI network of down-regulated genes revealed a cluster of 83 proteins involved in light and photosynthesis, 110 in response to hormone, 74 in hormone mediate signaling pathway and 22 related to aging."

transcriptome-wide analysis, microtubers, potato, Solanum tuberosum, darkness, cell cycle, ribosomal proteins, PEBP family genes, cytokinin BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA GENÉTICA GENÉTICA MOLECULAR DE PLANTAS GENÉTICA MOLECULAR DE PLANTAS

Transcriptome mining provides insights into cell wall metabolism and fiber lignification in Agave tequilana Weber

Luis Fernando Maceda Lopez ELSA BEATRIZ GONGORA CASTILLO Enrique Ibarra-Laclette DALIA C. MORAN VELAZQUEZ AMARANTA GIRON RAMIREZ Matthieu Bourdon José Luis Villalpando Aguilar Gabriela Chavez-Calvillo Toomer John Tang Parastoo Azadi Jorge Manuel Santamaría Fernández Itzel López-Rosas Mercedes G Lopez June Simpson FULGENCIO ALATORRE COBOS (2022, [Artículo])

Resilience of growing in arid and semiarid regions and a high capacity of accumulating sugar-rich biomass with low lignin percentages have placed Agave species as an emerging bioen-ergy crop. Although transcriptome sequencing of fiber-producing agave species has been explored, molecular bases that control wall cell biogenesis and metabolism in agave species are still poorly understood. Here, through RNAseq data mining, we reconstructed the cellulose biosynthesis pathway and the phenylpropanoid route producing lignin monomers in A. tequilana, and evaluated their expression patterns in silico and experimentally. Most of the orthologs retrieved showed differential expression levels when they were analyzed in different tissues with contrasting cellulose and lignin accumulation. Phylogenetic and structural motif analyses of putative CESA and CAD proteins allowed to identify those potentially involved with secondary cell wall formation. RT-qPCR assays revealed enhanced expression levels of AtqCAD5 and AtqCESA7 in parenchyma cells associated with extraxylary fibers, suggesting a mechanism of formation of sclerenchyma fibers in Agave similar to that reported for xylem cells in model eudicots. Overall, our results provide a framework for un-derstanding molecular bases underlying cell wall biogenesis in Agave species studying mechanisms involving in leaf fiber development in monocots. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

AGAVE CELL WALLS LIGNOCELLULOSE CAD PROTEIN CESA PROTEIN SCLERENCHYMA BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA GENÉTICA GENÉTICA MOLECULAR DE PLANTAS GENÉTICA MOLECULAR DE PLANTAS