Filtrar por:
Tipo de publicación
- Artículo (57)
- Tesis de maestría (5)
- Objeto de congreso (4)
- Tesis de doctorado (1)
- Documento de trabajo (1)
Autores
- ML JAT (7)
- C.M. Parihar (6)
- Hari Sankar Nayak (6)
- Mahesh Gathala (5)
- Pervez Zaidi (5)
Años de Publicación
Editores
- CICESE (2)
- Myra E. Finkelstein, University of California Santa Cruz, United States of America (2)
- Antoni Margalida, University of Lleida, Spain (1)
- Centro de Investigaciones Biológicas del Noroeste, S. C. (1)
- El autor (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (48)
- Repositorio Institucional CICESE (8)
- Repositorio Institucional CIBNOR (3)
- Repositorio institucional del IMTA (3)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (2)
Tipos de Acceso
- oa:openAccess (68)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (51)
- MAIZE (16)
- NITROGEN (11)
- HEAT STRESS (9)
- ABIOTIC STRESS (8)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Comprehending the evolution of gene editing platforms for crop trait improvement
deepmala sehgal Apekshita Singh SoomNath Raina (2022, [Artículo])
Cas9 Base Editing Prime Editing Epigenome Editing CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CRISPR ABIOTIC STRESS ARABIDOPSIS CROP IMPROVEMENT DNA ELECTROPORATION GENE EDITING RICE WHEAT
Fuai Sun XUECAI ZHANG Haoqiang Yu (2022, [Artículo])
BZR1s CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ARABIDOPSIS DNA BINDING PROTEINS PLANT PROTEIN TRANSCRIPTION FACTORS DROUGHT GENE EXPRESSION REGULATION GENETICS MAIZE METABOLISM TRANSGENIC PLANTS ABIOTIC STRESS
Hari Sankar Nayak C.M. Parihar Shankar Lal Jat ML JAT Ahmed Abdallah (2022, [Artículo])
Non-Linear Growth Model Nitrogen Remobilization Right Placement Precision Nitrogen Management CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GROWTH MODELS NITROGEN NUTRIENT MANAGEMENT
Kindie Tesfaye Dereje Ademe Enyew Adgo (2023, [Artículo])
This study determined the most effective plating density (PD) and nitrogen (N) fertilizer rate for well-adapted BH540 medium-maturing maize cultivars for current climate condition in north west Ethiopia midlands. The Decision Support System for Agrotechnology Transfer (DSSAT)-Crop Environment Resource Synthesis (CERES)-Maize model has been utilized to determine the appropriate PD and N-fertilizer rate. An experimental study of PD (55,555, 62500, and 76,900 plants ha−1) and N (138, 207, and 276 kg N ha−1) levels was conducted for 3 years at 4 distinct sites. The DSSAT-CERES-Maize model was calibrated using climate data from 1987 to 2018, physicochemical soil profiling data (wilting point, field capacity, saturation, saturated hydraulic conductivity, root growth factor, bulk density, soil texture, organic carbon, total nitrogen; and soil pH), and agronomic management data from the experiment. After calibration, the DSSAT-CERES-Maize model was able to simulate the phenology and growth parameters of maize in the evaluation data set. The results from analysis of variance revealed that the maximum observed and simulated grain yield, biomass, and leaf area index were recorded from 276 kg N ha−1 and 76,900 plants ha−1 for the BH540 maize variety under the current climate condition. The application of 76,900 plants ha−1 combined with 276 kg N ha−1 significantly increased observed and simulated yield by 25% and 15%, respectively, compared with recommendation. Finally, future research on different N and PD levels in various agroecological zones with different varieties of mature maize types could be conducted for the current and future climate periods.
Maize Model Planting Density CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE MODELS SPACING NITROGEN FERTILIZERS YIELDS
Maria Federica Carboni Simon Mills SONIA LORENA ARRIAGA GARCIA Gavin Collins Umer Zeeshan Ijaz Piet Nicolaas Luc Lens (2022, [Artículo])
"This study compared denitrification performances and microbial communities in fluidized bed reactors (FBRs) carrying out autotrophic denitrification using elemental sulfur (S0) and pyrite (FeS2) as electron donors. The reactors were operated for 220 days with nitrate loading rates varying between 23 and 200 mg N-NO-3 /Lmiddotd and HRT between 48 and 4 h. The highest denitrification rates achieved were 142.2 and 184.4 mg NNO-3 /Lmiddotd in pyrite and sulfur FBRs, respectively. Pyrite-driven denitrification produced less SO2- 4 and no buffer addition was needed to regulate the pH. The sulfur FBR needed instead CaCO3 to maintain the pH neutral and consequentially more sludge was produced (CaSO4 precipitation). The active community of pyrite-based systems was investigated and Azospira sp., Ferruginibacter sp., Rhodococcus sp. and Pseudomonas sp. were the predominant genera, while Thiobacillus sp. and Sulfurovum sp. dominated the active community in the sulfur FBR. However, Thiobacillus sp. became more dominant when operating at elevated nitrogen loading rate. Patterns of diversity and microbial community assembly were assessed and revealed three distinct stages of microbial community succession which corresponded with the operation of a period of high influent nitrate concentration (135 mg N-NO-3 /L). It is proposed that a high degree of functional redundancy in the initial microbial communities may have helped both reactors to respond better to such high influent nitrate concentration."
Pyrite Elemental sulfur Fluidized bed rector Nitrogen removal 16S rRNA Community assembly CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA
Alejandra Miranda Carrazco Yendi Navarro-Noya Bram Govaerts Nele Verhulst Luc Dendooven (2022, [Artículo])
Plant-associated microorganisms that affect plant development, their composition, and their functionality are determined by the host, soil conditions, and agricultural practices. How agricultural practices affect the rhizosphere microbiome has been well studied, but less is known about how they might affect plant endophytes. In this study, the metagenomic DNA from the rhizosphere and endophyte communities of root and stem of maize plants was extracted and sequenced with the “diversity arrays technology sequencing,” while the bacterial community and functionality (organized by subsystems from general to specific functions) were investigated in crops cultivated with or without tillage and with or without N fertilizer application. Tillage had a small significant effect on the bacterial community in the rhizosphere, but N fertilizer had a highly significant effect on the roots, but not on the rhizosphere or stem. The relative abundance of many bacterial species was significantly different in the roots and stem of fertilized maize plants, but not in the unfertilized ones. The abundance of N cycle genes was affected by N fertilization application, most accentuated in the roots. How these changes in bacterial composition and N genes composition might affect plant development or crop yields has still to be unraveled.
Bacterial Community Structure DArT-Seq Bacterial Community Functionality Genes Involved in N Cycling CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURAL PRACTICES MAIZE RHIZOSPHERE STEMS NITROGEN FERTILIZERS
Predicting zinc-enhanced maize hybrid performance under stress conditions
Nakai Matongera THOKOZILE NDHLELA Angeline van Biljon Maryke Labuschagne (2023, [Artículo])
Combined Stress Zinc Biofortification CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA HEAT STRESS DROUGHT STRESS HYBRIDS INBRED LINES ZINC BIOFORTIFICATION
Worldwide selection footprints for drought and heat in bread wheat (Triticum aestivum L.)
Ana Luisa Gómez Espejo Carolina Sansaloni Juan Burgueño Fernando Henrique Toledo Adalberto Benavides-Mendoza M. Humberto Reyes-Valdés (2022, [Artículo])
Genome–Environment Associations Climatic Variables Hormonal Elicitors CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ADAPTATION DROUGHT STRESS HEAT STRESS LANDRACES TRITICUM AESTIVUM
Sudhir Navathe Ramesh Chand Mir Asif Iquebal Govindan Velu arun joshi (2022, [Artículo])
Resistance Terminal Heat CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIPOLARIS SOROKINIANA HEAT STRESS WHEAT RESISTANCE VARIETIES