Filtrar por:
Tipo de publicación
- Artículo (45)
- Libro (6)
- Objeto de congreso (5)
- Tesis de maestría (5)
- Artículo (1)
Autores
- Adefris Teklewold (3)
- Alison Bentley (3)
- Carlos Guzman (3)
- Christian Thierfelder (3)
- Facundo Tabbita (3)
Años de Publicación
Editores
- Multidisciplinary Digital Publishing Institute (4)
- El autor (3)
- CICESE (1)
- Centro de Investigaciones Biológicas del Noroeste, S. C. (1)
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP) (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (46)
- Repositorio Institucional CIBNOR (9)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (3)
- CIATEQ Digital (1)
- Repositorio Institucional CICESE (1)
Tipos de Acceso
- oa:openAccess (62)
- oa:embargoedAccess (1)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (52)
- MAIZE (9)
- CONSERVATION AGRICULTURE (8)
- BIOLOGÍA Y QUÍMICA (6)
- CIENCIAS AGRARIAS (6)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Agricultural lime value chain efficiency for reducing soil acidity in Ethiopia
Moti Jaleta (2023, [Artículo])
Soil acidity is challenging agricultural production in Ethiopia. Above 43% of the farmland is under soil acidity problem and it leads to low crop yields and production losses. Ag-lime is widely considered as an effective remedy for amending soil acidity. This study assesses the current structure of ag-lime value chain and its functionality focusing on central parts of Ethiopia where lime is produced and channeled to acidity affected areas. The study uses Ethiopia as a case study and applies qualitative methods such as key informant interviews and focus group discussions to collect data from different actors in the ag-lime value chain. Key findings indicate that both public and private ag-lime producing factories are operating below their capacity. Due to limited enabling environments, the engagement of private sector in ag-lime value chain is minimal. In addition, farmers have a good awareness of soil acidity problem on their farms, and its causes and mitigation strategies in all regions. However, the adoption of ag-lime by smallholders was minimal. Overall, the current structure of the ag-lime value chain appears fragmented and needs improvement. Addressing soil acidity challenge through efficient ag-lime value chain could narrow lime supply-demand mismatches and increase widespread adoption by farmers to enhance crop productivity and food security in acidity-prone areas of the country.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA LIMES PRODUCTION COSTS VALUE CHAINS SOIL PH
João Vasco Silva Pytrik Reidsma (2024, [Artículo])
Nitrogen (N) management is essential to ensure crop growth and to balance production, economic, and environmental objectives from farm to regional levels. This study aimed to extend the WOFOST crop model with N limited production and use the model to explore options for sustainable N management for winter wheat in the Netherlands. The extensions consisted of the simulation of crop and soil N processes, stress responses to N deficiencies, and the maximum gross CO2 assimilation rate being computed from the leaf N concentration. A new soil N module, abbreviated as SNOMIN (Soil Nitrogen for Organic and Mineral Nitrogen module) was developed. The model was calibrated and evaluated against field data. The model reproduced the measured grain dry matter in all treatments in both the calibration and evaluation data sets with a RMSE of 1.2 Mg ha−1 and the measured aboveground N uptake with a RMSE of 39 kg N ha−1. Subsequently, the model was applied in a scenario analysis exploring different pathways for sustainable N use on farmers' wheat fields in the Netherlands. Farmers' reported yield and N fertilization management practices were obtained for 141 fields in Flevoland between 2015 and 2017, representing the baseline. Actual N input and N output (amount of N in grains at harvest) were estimated for each field from these data. Water and N-limited yields and N outputs were simulated for these fields to estimate the maximum attainable yield and N output under the reported N management. The investigated scenarios included (1) closing efficiency yield gaps, (2) adjusting N input to the minimum level possible without incurring yield losses, and (3) achieving 90% of the simulated water-limited yield. Scenarios 2 and 3 were devised to allow for soil N mining (2a and 3a) and to not allow for soil N mining (2b and 3b). The results of the scenario analysis show that the largest N surplus reductions without soil N mining, relative to the baseline, can be obtained in scenario 1, with an average of 75%. Accepting negative N surpluses (while maintaining yield) would allow maximum N input reductions of 84 kg N ha−1 (39%) on average (scenario 2a). However, the adjustment in N input for these pathways, and the resulting N surplus, varied strongly across fields, with some fields requiring greater N input than used by farmers.
Crop Growth Models WOFOST CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROPS NITROGEN-USE EFFICIENCY WINTER WHEAT SOIL WATER
Balancing quality with quantity: a case study of UK bread wheat
Nick Fradgley Keith Gardner Stéphanie M. Swarbreck Alison Bentley (2023, [Artículo])
Grain Protein Content Environmental Sustainability End-Use Quality Modern Bread Baking Methods CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GRAIN PROTEIN CONTENT HISTORY QUALITY WHEAT YIELDS
Response to heat stress and glutenins allelic variation effects on quality traits in durum wheat
Facundo Tabbita Karim Ammar Maria Itria Ibba MARCO MACCAFERRI ROBERTO TUBEROSA Carlos Guzman (2024, [Artículo])
Gluten Quality Sedimentation Volume Wheat Quality CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GLUTEN QUALITY GLUTENINS HEAT STRESS WHEAT
Estimating lime requirements for tropical soils: Model comparison and development
Fernando Aramburu Merlos João Vasco Silva Frédéric Baudron Robert Hijmans (2023, [Artículo])
Acid tropical soils may become more productive when treated with agricultural lime, but optimal lime rates have yet to be determined in many tropical regions. In these regions, lime rates can be estimated with lime requirement models based on widely available soil data. We reviewed seven of these models and introduced a new model (LiTAS). We evaluated the models’ ability to predict the amount of lime needed to reach a target change in soil chemical properties with data from four soil incubation studies covering 31 soil types. Two foundational models, one targeting acidity saturation and the other targeting base saturation, were more accurate than the five models that were derived from them, while the LiTAS model was the most accurate. The models were used to estimate lime requirements for 303 African soil samples. We found large differences in the estimated lime rates depending on the target soil chemical property of the model. Therefore, an important first step in formulating liming recommendations is to clearly identify the soil property of interest and the target value that needs to be reached. While the LiTAS model can be useful for strategic research, more information on acidity-related problems other than aluminum toxicity is needed to comprehensively assess the benefits of liming.
Exchangeable Acidity Aluminum Saturation Calcium Carbonate Equivalent CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CHEMICOPHYSICAL PROPERTIES LIMES TROPICAL ZONES ACID SOILS ALUMINIUM BASE SATURATION CALCIUM CARBONATE
EGS planning, production, maintenance of inbred lines and Quality Assurance/Quality Control (QA/QC)
Fidelis Owino Berhanu Tadesse Ertiro (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA INBRED LINES SEED QUALITY QUALITY CONTROL GENETIC MARKERS
Gatien Falconnier Marc Corbeels Frédéric Baudron Antoine Couëdel leonard rusinamhodzi bernard vanlauwe Ken Giller (2023, [Artículo])
Can farmers in sub-Saharan Africa (SSA) boost crop yields and improve food availability without using more mineral fertilizer? This question has been at the center of lively debates among the civil society, policy-makers, and in academic editorials. Proponents of the “yes” answer have put forward the “input reduction” principle of agroecology, i.e. by relying on agrobiodiversity, recycling and better efficiency, agroecological practices such as the use of legumes and manure can increase crop productivity without the need for more mineral fertilizer. We reviewed decades of scientific literature on nutrient balances in SSA, biological nitrogen fixation of tropical legumes, manure production and use in smallholder farming systems, and the environmental impact of mineral fertilizer. Our analyses show that more mineral fertilizer is needed in SSA for five reasons: (i) the starting point in SSA is that agricultural production is “agroecological” by default, that is, very low mineral fertilizer use, widespread mixed crop-livestock systems and large crop diversity including legumes, but leading to poor soil fertility as a result of widespread soil nutrient mining, (ii) the nitrogen needs of crops cannot be adequately met solely through biological nitrogen fixation by legumes and recycling of animal manure, (iii) other nutrients like phosphorus and potassium need to be replaced continuously, (iv) mineral fertilizers, if used appropriately, cause little harm to the environment, and (v) reducing the use of mineral fertilizers would hamper productivity gains and contribute indirectly to agricultural expansion and to deforestation. Yet, the agroecological principles directly related to soil fertility—recycling, efficiency, diversity—remain key in improving soil health and nutrient-use efficiency, and are critical to sustaining crop productivity in the long run. We argue for a nuanced position that acknowledges the critical need for more mineral fertilizers in SSA, in combination with the use of agroecological practices and adequate policy support.
Manure Crop Yields Smallholder Farming Systems Environmental Hazards CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOLOGICAL NITROGEN FIXATION LEGUMES NUTRIENT BALANCE SOIL FERTILITY AGROECOLOGY YIELD INCREASES LITERATURE REVIEWS
Climate robust soil fertility management by smallholders in Africa, Asia, and Latin America
Tek Sapkota (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL FERTILITY SMALLHOLDERS FERTILIZERS NUTRIENT MANAGEMENT
Christian Thierfelder Blessing Mhlanga Hambulo Ngoma Paswel Marenya Md Abdul Matin Adane Tufa (2024, [Artículo])
Production and utilization of crop residues as mulch and effective weed management are two central elements in the successful implementation of Conservation Agriculture (CA) systems in southern Africa. Yet, the challenges of crop residue availability for mulch or the difficulties in managing weed proliferation in CA systems are bigger than a micro-level focus on weeds and crop residues themselves. The bottlenecks are symptoms of broader systemic complications that cannot be resolved without appreciating the interactions between the current scientific understanding of CA and its application in smallholder systems, private incentives, social norms, institutions, and government policy. In this paper, we elucidate a series of areas that represent some unquestioned answers about chemical weed control and unanswered questions about how to maintain groundcover demanding more research along the natural and social sciences continuum. In some communities, traditional rules that allow free-range grazing of livestock after harvesting present a barrier in surface crop residue management. On the other hand, many of the communities either burn, remove, or incorporate the residues into the soil thus hindering the near-permanent soil cover required in CA systems. The lack of soil cover also means that weed management through soil mulch is unachievable. Herbicides are often a successful stopgap solution to weed control, but they are costly, and most farmers do not use them as recommended, which reduces efficacy. Besides, the use of herbicides can cause environmental hazards and may affect human health. Here, we suggest further assessment of the manipulation of crop competition, the use of vigorously growing cover crops, exploration of allelopathy, and use of microorganisms in managing weeds and reducing seed production to deplete the soil weed seed bank. We also suggest in situ production of plant biomass, use of unpalatable species for mulch generation and change of grazing by-laws towards a holistic management of pastures to reduce the competition for crop residues. However, these depend on the socio-economic status dynamics at farmer and community level.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA INTEGRATED CROP-LIVESTOCK SYSTEMS CROP RESIDUES ZERO TILLAGE SOCIAL NORMS SUSTAINABLE INTENSIFICATION WEED CONTROL
Alison Bentley Charles Chen Nunzio D'Agostino (2022, [Artículo])
Allele Mining High-Throughput Phenotyping Genomic Estimated Breeding Value CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP IMPROVEMENT DNA CHROMOSOME MAPPING GENETIC LINKAGE GENOMES GENOTYPING GERMINATION HEAT STRESS QUALITY CONTROL SINGLE NUCLEOTIDE POLYMORPHISM TRITICUM AESTIVUM GENETIC DIVERSITY (AS RESOURCE) HIGH-THROUGHPUT SEQUENCING