Filtrar por:
Tipo de publicación
- Artículo (114)
- Objeto de congreso (44)
- Capítulo de libro (6)
- Tesis de maestría (5)
- Documento de trabajo (5)
Autores
- sridhar bhavani (10)
- Jelle Van Loon (8)
- Alison Bentley (7)
- Govindan Velu (7)
- Ravi Singh (6)
Años de Publicación
Editores
- CICESE (3)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información. (2)
- Frontiers Media S.A. (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (172)
- Repositorio Institucional CICESE (3)
- Repositorio Institucional Zaloamati (2)
- Repositorio Institucional CIBNOR (1)
Tipos de Acceso
- oa:openAccess (178)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (173)
- WHEAT (85)
- CLIMATE CHANGE (21)
- MAIZE (20)
- YIELDS (18)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Anup Das virender kumar Peter Craufurd Andrew Mcdonald Sonam Sherpa (2023, [Artículo])
Introduction: Conservation agriculture (CA) is gaining attention in the South Asia as an environmentally benign and sustainable food production system. The knowledge of the soil bacterial community composition along with other soil properties is essential for evaluating the CA-based management practices for achieving the soil environment sustainability and climate resilience in the rice-wheat-greengram system. The long-term effects of CA-based tillage-cum-crop establishment (TCE) methods on earthworm population, soil parameters as well as microbial diversity have not been well studied. Methods: Seven treatments (or scenarios) were laid down with the various tillage (wet, dry, or zero-tillage), establishment method (direct-or drill-seeding or transplantation) and residue management practices (mixed with the soil or kept on the soil surface). The soil samples were collected after 7 years of experimentation and analyzed for the soil quality and bacterial diversity to examine the effect of tillage-cum-crop establishment methods. Results and Discussion: Earthworm population (3.6 times), soil organic carbon (11.94%), macro (NPK) (14.50–23.57%) and micronutrients (Mn, and Cu) (13.25 and 29.57%) contents were appreciably higher under CA-based TCE methods than tillage-intensive farming practices. Significantly higher number of OTUs (1,192 ± 50) and Chao1 (1415.65 ± 14.34) values were observed in partial CA-based production system (p ≤ 0.05). Forty-two (42) bacterial phyla were identified across the scenarios, and Proteobacteria, Actinobacteria, and Firmicutes were the most dominant in all the scenarios. The CA-based scenarios harbor a high abundance of Proteobacteria (2–13%), whereas the conventional tillage-based scenarios were dominated by the bacterial phyla Acidobacteria and Chloroflexi and found statistically differed among the scenarios (p ≤ 0.05). Composition of the major phyla, i.e., Proteobacteria, Actinobacteria, and Firmicutes were associated differently with either CA or farmers-based tillage management practices. Overall, the present study indicates the importance of CA-based tillage-cum-crop establishment methods in shaping the bacterial diversity, earthworms population, soil organic carbon, and plant nutrient availability, which are crucial for sustainable agricultural production and resilience in agro-ecosystem.
Metagenomics Bacterial Diversity Rice-Wheat-Greengram CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CONSERVATION AGRICULTURE DNA SEQUENCES EARTHWORMS METAGENOMICS SOIL QUALITY AGROECOSYSTEMS
Manish Kakraliya Deepak Bijarniya Parbodh Chander Sharma ML JAT (2022, [Artículo])
Intensive Tillage Conventional Rice–Wheat Systems Energy Efficiency On-Farm Studies Climate-Smart Agricultural Practices CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE-SMART AGRICULTURE RICE WHEAT CROPPING SYSTEMS
Nepal Seed And Fertilizer Project
Dyutiman Choudhary (2021, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SEED SEED INDUSTRY PRIVATE SECTOR MAIZE RICE INTEGRATED SOIL FERTILITY MANAGEMENT COVID-19
Optimization of N dose in rice under conservation agriculture with sub-surface drip fertigation
C.M. Parihar Hari Sankar Nayak Renu Pandey Avinash Kumar ML JAT (2021, [Artículo])
Biological Yield Economic N Dose Yield Attributes CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA YIELDS NITROGEN ZERO TILLAGE DIRECT SOWING RICE
Akshaya Biswal Daisuke Urano (2022, [Artículo])
Heterotrimeric G Proteins Extra-Large G Proteins Cas9 OsXLG CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CRISPR RICE PROTEINS PLANT GROWTH DISEASE RESISTANCE
Timothy Joseph Krupnik (2023, [Artículo])
Fall Armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae), native to the Americas, is a polyphagous insect pest feeding on more than 350 plant species. We studied the developmental and demographic parameters of the maize (Zea mays) strain of FAW on rice (Oryza sativa), and compared the results with its prime host, maize. The developmental period from egg to adult among rice varieties did not differ significantly; however, it did differ significantly between rice and maize, as feeding on rice rather than maize extends development duration of FAW larvae by 15.15%. FAW larvae collected and reared on maize were found to be of significantly higher weight than those reared on rice at two sequential dates of their development; pupal weight however was observed as statistically similar between these two host crops. Regardless of the host, female adults always emerged before males; in maize, female FAW appeared 3.36 days earlier than males. Females derived from rice had longer pre-oviposition periods and shorter oviposition ones than those derived from maize. In rice and maize, the age-specific fecundity rate (mx) peaked at 40 days and 33 days, respectively. When the Fall Armyworm consumed maize instead of rice, there was an increase in the reproduction rate (R 0), the intrinsic rate of natural increase (rm), and the finite rate of increase (λ). For instance, when FAW fed on rice, the rm value was 0.121, whereas it rose to 0.173 when FAW fed on maize. Feeding on rice instead of maize resulted in significantly longer mean length of generation (tG) and doubling time (tD) for the fall armyworm (FAW). This suggests that it took a longer time for the FAW population to double when it was fed rice under controlled greenhouse conditions. In summary, our research suggests that FAW can survive and complete its life cycle on rice plants and on multiple varieties of rice in Bangladesh. However, field verification is necessary before drawing strong conclusions as to the risk posed by FAW in rice. This requires additional studies of FAW and associated insect community dynamics under non-controlled conditions and in the context of multi-species interactions in Asian rice fields.
Invasive Pest Life Table Parameters CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA HOST PLANTS PESTS RICE SPODOPTERA FRUGIPERDA FALL ARMYWORMS
Nepal Seed And Fertilizer Project
Dyutiman Choudhary (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SEED FERTILIZERS SEED INDUSTRY PRIVATE SECTOR MAIZE RICE INTEGRATED SOIL FERTILITY MANAGEMENT COVID-19
Roberto Fritsche-Neto Marlee Labroo (2024, [Artículo])
Genomic Prediction Reciprocal Recurrent Selection Heterotic Pools CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA STOCHASTIC MODELS RICE HYBRIDS GENETIC IMPROVEMENT GENETIC GAIN BREEDING PROGRAMMES
Mustafa Kamal Timothy Joseph Krupnik (2024, [Artículo])
High-resolution mapping of rice fields is crucial for understanding and managing rice cultivation in countries like Bangladesh, particularly in the face of climate change. Rice is a vital crop, cultivated in small scale farms that contributes significantly to the economy and food security in Bangladesh. Accurate mapping can facilitate improved rice production, the development of sustainable agricultural management policies, and formulation of strategies for adapting to climatic risks. To address the need for timely and accurate rice mapping, we developed a framework specifically designed for the diverse environmental conditions in Bangladesh. We utilized Sentinel-1 and Sentinel-2 time-series data to identify transplantation and peak seasons and employed the multi-Otsu automatic thresholding approach to map rice during the peak season (April–May). We also compared the performance of a random forest (RF) classifier with the multi-Otsu approach using two different data combinations: D1, which utilizes data from the transplantation and peak seasons (D1 RF) and D2, which utilizes data from the transplantation to the harvest seasons (D2 RF). Our results demonstrated that the multi-Otsu approach achieved an overall classification accuracy (OCA) ranging from 61.18% to 94.43% across all crop zones. The D2 RF showed the highest mean OCA (92.15%) among the fourteen crop zones, followed by D1 RF (89.47%) and multi-Otsu (85.27%). Although the multi-Otsu approach had relatively lower OCA, it proved effective in accurately mapping rice areas prior to harvest, eliminating the need for training samples that can be challenging to obtain during the growing season. In-season rice area maps generated through this framework are crucial for timely decision-making regarding adaptive management in response to climatic stresses and forecasting area-wide productivity. The scalability of our framework across space and time makes it particularly suitable for addressing field data scarcity challenges in countries like Bangladesh and offers the potential for future operationalization.
Synthetic Aperture Radar Random Forest Boro Rice In-Season Maps CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SAR (RADAR) RICE FLOODING CLIMATE CHANGE