Filtrar por:
Tipo de publicación
- Artículo (48)
- Artículo (5)
- Capítulo de libro (4)
- Documento de trabajo (4)
- Objeto de congreso (3)
Autores
- Tek Sapkota (5)
- Ravi Singh (3)
- Alison Bentley (2)
- CARLOS ABRAHAM GUERRERO RUIZ (2)
- CARLOS ALBERTO PUCH HAU (2)
Años de Publicación
Editores
- Universidad Autónoma de Ciudad Juárez (4)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco, División de Ciencias y Artes para el Diseño, Departamento de Evaluación del Diseño en el Tiempo. (3)
- Universidad Autónoma de Baja California (2)
- Alberto Amato, IRIG-CEA Grenoble, France (1)
- CICESE (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (30)
- Repositorio Institucional CICESE (9)
- CIATEQ Digital (5)
- Repositorio Institucional Zaloamati (5)
- Repositorio Institucional de la Universidad Autónoma de Ciudad Juárez (5)
Tipos de Acceso
- oa:openAccess (63)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (34)
- BIOLOGÍA Y QUÍMICA (11)
- OTRAS (10)
- CIENCIAS DE LA VIDA (9)
- CIENCIAS SOCIALES (8)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
JULIO HUERTA_ESPINO Ravi Singh (2017, [Artículo])
Near Isogenic Lines Virulence Spectrum Yellow Rust CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA VIRULENCE PUCCINIA STRIIFORMIS WHEAT RESISTANCE GENES
SERGIO GARCIA LAYNES VIRGINIA AURORA HERRERA VALENCIA Lilia Guadalupe Tamayo Torres VERONICA LIMONES BRIONES FELIPE ALONSO BARREDO POOL FRAY MARTIN BAAS ESPINOLA Angel Alpuche-Solis CARLOS ALBERTO PUCH HAU SANTY PERAZA ECHEVERRIA (2022, [Artículo])
WRKY transcription factors (TFs) play key roles in plant defense responses through phytohormone signaling pathways. However, their functions in tropical fruit crops, especially in banana, remain largely unknown. Several WRKY genes from the model plants rice (OsWRKY45) and Arabidopsis (AtWRKY18, AtWRKY60, AtWRKY70) have shown to be attractive TFs for engineering disease resistance. In this study, we isolated four banana cDNAs (MaWRKY18, MaWRKY45, MaWRKY60, and MaWRKY70) with homology to these rice and Arabidopsis WRKY genes. The MaWRKY cDNAs were isolated from the wild banana Musa acuminata ssp. malaccensis, which is resistant to several diseases of this crop and is a progenitor of most banana cultivars. The deduced amino acid sequences of the four MaWRKY cDNAs revealed the presence of the conserved WRKY domain of ~60 amino acids and a zinc-finger motif at the N-terminus. Based on the number of WRKY repeats and the structure of the zinc-finger motif, MaWRKY18 and MaWRKY60 belong to group II of WRKY TFs, while MaWRKY45 and MaWRKY70 are members of group III. Their corresponding proteins were located in the nuclei of onion epidermal cells and were shown to be functional TFs in yeast cells. Moreover, expression analyses revealed that the majority of these MaWRKY genes were upregulated by salicylic acid (SA) or methyl jasmonate (MeJA) phytohormones, although the expression levels were relatively higher with MeJA treatment. The fact that most of these banana WRKY genes were upregulated by SA or MeJA, which are involved in systemic acquired resistance (SAR) or induced systemic resistance (ISR), respectively, make them interesting candidates for bioengineering broad-spectrum resistance in this crop. © 2022 by the authors.
BANANA TRANSCRIPTION FACTOR WRKY DEFENSE PHYTOHORMONES SALICYLIC ACID METHYL JASMONATE SAR ISR BROAD-SPECTRUM RESISTANCE BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA GENÉTICA GENÉTICA MOLECULAR DE PLANTAS GENÉTICA MOLECULAR DE PLANTAS
SERGIO GARCIA LAYNES VIRGINIA AURORA HERRERA VALENCIA Lilia Guadalupe Tamayo Torres VERONICA LIMONES BRIONES FELIPE ALONSO BARREDO POOL FRAY MARTIN BAAS ESPINOLA Ángel Gabriel Alpuche Solís CARLOS ALBERTO PUCH HAU SANTY PERAZA ECHEVERRIA (2022, [Artículo])
"WRKY transcription factors (TFs) play key roles in plant defense responses through phytohormone signaling pathways. However, their functions in tropical fruit crops, especially in banana, remain largely unknown. Several WRKY genes from the model plants rice (OsWRKY45) and Arabidopsis (AtWRKY18, AtWRKY60, AtWRKY70) have shown to be attractive TFs for engineering disease resistance. In this study, we isolated four banana cDNAs (MaWRKY18, MaWRKY45, MaWRKY60, and MaWRKY70) with homology to these rice and Arabidopsis WRKY genes. The MaWRKY cDNAs were isolated from the wild banana Musa acuminata ssp. malaccensis, which is resistant to several diseases of this crop and is a progenitor of most banana cultivars. The deduced amino acid sequences of the four MaWRKY cDNAs revealed the presence of the conserved WRKY domain of ~60 amino acids and a zinc-finger motif at the N-terminus. Based on the number of WRKY repeats and the structure of the zinc-finger motif, MaWRKY18 and MaWRKY60 belong to group II of WRKY TFs, while MaWRKY45 and MaWRKY70 are members of group III. Their corresponding proteins were located in the nuclei of onion epidermal cells and were shown to be functional TFs in yeast cells. Moreover, expression analyses revealed that the majority of these MaWRKY genes were upregulated by salicylic acid (SA) or methyl jasmonate (MeJA) phytohormones, although the expression levels were relatively higher with MeJA treatment. The fact that most of these banana WRKY genes were upregulated by SA or MeJA, which are involved in systemic acquired resistance (SAR) or induced systemic resistance (ISR), respectively, make them interesting candidates for bioengineering broad-spectrum resistance in this crop."
Banana Transcription factor WRKY Defense phytohormones Salicylic acid Methyl jasmonate SAR ISR Broad-spectrum resistance BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA GENÉTICA GENÉTICA
Daniel Arturo Cernas Ortiz (2023, [Artículo, Artículo])
This study´s objective was to examine empirical relationships between three dimensions of time perspective (future, present fatalistic, and past negative) and occupational self-efficacy. By surveying Mexican (n = 286) and U.S. (n = 272) respondents, we also tested the moderating role of culture. Regression analyses revealed that time perspective dimensions have significant associations with occupational self-efficacy, being future time perspective more potent than its past negative and present fatalistic counterparts. Moderation analyses indicated that none of the examined time perspective-self-efficacy relationships varied significantly between the U.S. and Mexico. Overall, this study suggests that relationships between time perspective and occupational self-efficacy vary according to different temporal dimensions, that future TP is key to develop occupational self-efficacy, and that cultural values may not exert a significant influence on the time perspective-occupational self-efficacy connection.
Perspectiva de tiempo autoeficacia diferencias culturales análisis de moderación CIENCIAS SOCIALES CIENCIAS SOCIALES Time perspective self-efficacy cultural differences moderation analysis
Maraeva Gianella Daniele Dondi Andreas Börner Anca Macovei Andrea Pagano Filippo Guzzon Alma Balestrazzi (2022, [Artículo])
Thermogravimetry CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CARBOHYDRATES PROLINE TOCOPHEROLS GENETICS PHYSIOLOGY PEAS SEEDS SUGARS DIFFERENTIAL SCANNING CALORIMETRY SEED LONGEVITY THERMOGRAVIMETRIC ANALYSIS
Shailendra Sharma Avinash Kumar Apekshita Singh deepmala sehgal Shailendra Goel SoomNath Raina (2022, [Artículo])
Immune Evasion Mutation Analysis Novel Spike Mutations Reduced Neutralization SARS-CoV-2 CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA COVID-19 NEUTRALIZATION SPIKES
CAIXIA LAN Ravi Singh JULIO HUERTA_ESPINO Zaifeng Li Evans Lagudah sridhar bhavani (2022, [Artículo])
Genetic Analysis Molecular Mapping Wheat Rusts APR Genes CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ADULT PLANT RESISTANCE LANDRACES WHEAT RUSTS
Md Abdul Matin (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SMALLHOLDERS ECONOMIC ANALYSIS
Review of Nationally Determined Contributions (NCD) of Kenya from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
Agriculture is one of the fundamental pillars of the 2022–2027 Bottom-up Economic Transformation Plan of the Government of Kenya for tackling complex domestic and global challenges. Kenya's food system is crucial for climate change mitigation and adaptation. Kenya has prioritized aspects of agriculture, food, and land use as critical sectors for reducing emissions towards achieving Vision 2030's transformation to a low-carbon, climate-resilient development pathway. Kenya's updated NDC, as well as supporting mitigation and adaptation technical analysis reports and other policy documents, has identified an ambitious set of agroecological transformative measures to promote climate-smart agriculture, regenerative approaches, and nature-positive solutions. Kenya is committed to implementing and updating its National Climate Change Action Plans (NCCAPs) to present and achieve the greenhouse gas (GHG) emission reduction targets and resilience outcomes that it has identified.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES