Filtrar por:
Tipo de publicación
- Event (4582)
- Artículo (1053)
- Dataset (932)
- Tesis de maestría (736)
- Tesis de doctorado (380)
Autores
- Servicio Sismológico Nacional (IGEF-UNAM) (4582)
- Thomas Payne (298)
- Fernando Nuno Dias Marques Simoes (250)
- Ravi Singh (204)
- Jose Crossa (98)
Años de Publicación
Editores
- UNAM, IGEF, SSN, Grupo de Trabajo (4582)
- International Maize and Wheat Improvement Center (644)
- Cenoteando, Facultad de Ciencias, UNAM (cenoteando.mx) (249)
- Instituto Mexicano de Tecnología del Agua (193)
- El autor (122)
Repositorios Orígen
- Repositorio de datos del Servicio Sismológico Nacional (4582)
- Repositorio Institucional de Datos y Software de Investigación del CIMMYT (682)
- Repositorio institucional del IMTA (503)
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (426)
- COLECCIONES DIGITALES COLMEX (368)
Tipos de Acceso
- oa:openAccess (8277)
- oa:embargoedAccess (11)
- oa:Computación y Sistemas (1)
Idiomas
Materias
- Sismología (13746)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (5150)
- CIENCIAS DE LA TIERRA Y DEL ESPACIO (4631)
- GEOFÍSICA (4585)
- SISMOLOGÍA Y PROSPECCIÓN SÍSMICA (4584)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Kindie Tesfaye Vakhtang Shelia Pierre C. Sibiry Traore Dawit Solomon Gerrit Hoogenboom (2023, [Artículo])
Seasonal climate variability determines crop productivity in Ethiopia, where rainfed smallholder farming systems dominate in the agriculture production. Under such conditions, a functional and granular spatial yield forecasting system could provide risk management options for farmers and agricultural and policy experts, leading to greater economic and social benefits under highly variable environmental conditions. Yet, there are currently only a few forecasting systems to support early decision making for smallholder agriculture in developing countries such as Ethiopia. To address this challenge, a study was conducted to evaluate a seasonal crop yield forecast methodology implemented in the CCAFS Regional Agricultural Forecasting Toolbox (CRAFT). CRAFT is a software platform that can run pre-installed crop models and use the Climate Predictability Tool (CPT) to produce probabilistic crop yield forecasts with various lead times. Here we present data inputs, model calibration, evaluation, and yield forecast results, as well as limitations and assumptions made during forecasting maize yield. Simulations were conducted on a 0.083° or ∼ 10 km resolution grid using spatially variable soil, weather, maize hybrids, and crop management data as inputs for the Cropping System Model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT). CRAFT combines gridded crop simulations and a multivariate statistical model to integrate the seasonal climate forecast for the crop yield forecasting. A statistical model was trained using 29 years (1991–2019) data on the Nino-3.4 Sea surface temperature anomalies (SSTA) as gridded predictors field and simulated maize yields as the predictand. After model calibration the regional aggregated hindcast simulation from 2015 to 2019 performed well (RMSE = 164 kg/ha). The yield forecasts in both the absolute and relative to the normal yield values were conducted for the 2020 season using different predictor fields and lead times from a grid cell to the national level. Yield forecast uncertainties were presented in terms of cumulative probability distributions. With reliable data and rigorous calibration, the study successfully demonstrated CRAFT's ability and applicability in forecasting maize yield for smallholder farming systems. Future studies should re-evaluate and address the importance of the size of agricultural areas while comparing aggregated simulated yields with yield data collected from a fraction of the target area.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP MODELLING DECISION SUPPORT SYSTEMS FORECASTING MAIZE
João Vasco Silva Frits K. Van Evert Pytrik Reidsma (2023, [Artículo])
Context: Wheat crop growth models from all over the world have been calibrated on the Groot and Verberne (1991) data set, collected between 1982 and 1984 in the Netherlands, in at least 28 published studies to date including various recent ones. However, the recent use of this data set for calibration of potential yield is questionable as actual Dutch winter wheat yields increased by 3.1 Mg ha-1 over the period 1984 – 2015. A new comprehensive set of winter wheat experiments, suitable for crop model calibration, was conducted in Wageningen during the growing seasons of 2013–2014 and of 2014–2015. Objective: The present study aimed to quantify the change of winter wheat variety traits between 1984 and 2015 and to examine which of the identified traits explained the increase in wheat yield most. Methods: PCSE-LINTUL3 was calibrated on the Groot and Verberne data (1991) set. Next, it was evaluated on the 2013–2015 data set. The model was further recalibrated on the 2013–2015 data set. Parameter values of both calibrations were compared. Sensitivity analysis was used to assess to what extent climate change, elevated CO2, changes in sowing dates, and changes in cultivar traits could explain yield increases. Results: The estimated reference light use efficiency and the temperature sum from anthesis to maturity were higher in 2013–2015 than in 1982–1984. PCSE-LINTUL3, calibrated on the 1982–1984 data set, underestimated the yield potential of 2013–2015. Sensitivity analyses showed that about half of the simulated winter wheat yield increase between 1984 and 2015 in the Netherlands was explained by elevated CO2 and climate change. The remaining part was explained by the increased temperature sum from anthesis to maturity and, to a smaller extent, by changes in the reference light use efficiency. Changes in sowing dates, biomass partitioning fractions, thermal requirements for anthesis, and biomass reallocation did not explain the yield increase. Conclusion: Recalibration of PCSE-LINTUL3 was necessary to reproduce the high wheat yields currently obtained in the Netherlands. About half of the reported winter wheat yield increase was attributed to climate change and elevated CO2. The remaining part of the increase was attributed to changes in the temperature sum from anthesis to maturity and, to a lesser extent, the reference light use efficiency. Significance: This study systematically addressed to what extent changes in various cultivar traits, climate change, and elevated CO2 can explain the winter wheat yield increase observed in the Netherlands between 1984 and 2015.
Light Use Efficiency Potential Yield CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP MODELLING LIGHT PHENOLOGY MAXIMUM SUSTAINABLE YIELD TRITICUM AESTIVUM WINTER WHEAT
João Vasco Silva Pytrik Reidsma (2024, [Artículo])
Nitrogen (N) management is essential to ensure crop growth and to balance production, economic, and environmental objectives from farm to regional levels. This study aimed to extend the WOFOST crop model with N limited production and use the model to explore options for sustainable N management for winter wheat in the Netherlands. The extensions consisted of the simulation of crop and soil N processes, stress responses to N deficiencies, and the maximum gross CO2 assimilation rate being computed from the leaf N concentration. A new soil N module, abbreviated as SNOMIN (Soil Nitrogen for Organic and Mineral Nitrogen module) was developed. The model was calibrated and evaluated against field data. The model reproduced the measured grain dry matter in all treatments in both the calibration and evaluation data sets with a RMSE of 1.2 Mg ha−1 and the measured aboveground N uptake with a RMSE of 39 kg N ha−1. Subsequently, the model was applied in a scenario analysis exploring different pathways for sustainable N use on farmers' wheat fields in the Netherlands. Farmers' reported yield and N fertilization management practices were obtained for 141 fields in Flevoland between 2015 and 2017, representing the baseline. Actual N input and N output (amount of N in grains at harvest) were estimated for each field from these data. Water and N-limited yields and N outputs were simulated for these fields to estimate the maximum attainable yield and N output under the reported N management. The investigated scenarios included (1) closing efficiency yield gaps, (2) adjusting N input to the minimum level possible without incurring yield losses, and (3) achieving 90% of the simulated water-limited yield. Scenarios 2 and 3 were devised to allow for soil N mining (2a and 3a) and to not allow for soil N mining (2b and 3b). The results of the scenario analysis show that the largest N surplus reductions without soil N mining, relative to the baseline, can be obtained in scenario 1, with an average of 75%. Accepting negative N surpluses (while maintaining yield) would allow maximum N input reductions of 84 kg N ha−1 (39%) on average (scenario 2a). However, the adjustment in N input for these pathways, and the resulting N surplus, varied strongly across fields, with some fields requiring greater N input than used by farmers.
Crop Growth Models WOFOST CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROPS NITROGEN-USE EFFICIENCY WINTER WHEAT SOIL WATER
Vanika Garg Rutwik Barmukh Manish Roorkiwal Chris Ojiewo Abhishek Bohra MAHENDAR THUDI Vikas Kumar Singh Himabindu Kudapa Reyaz Mir Chellapilla Bharadwaj Xin Liu Manish Pandey (2024, [Artículo])
Agricultural Biotechnology Crop Genomics Genome Sequencing CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOTECHNOLOGY CROPS GENOMICS PLANT BREEDING AGRICULTURE GENETIC IMPROVEMENT
M. Humberto Reyes-Valdés Juan Burgueño Carolina Sansaloni Thomas Payne Rosa Angela Pacheco Gil (2022, [Artículo])
Crop Genebanks Optimization Relative Balance CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROPS GENE BANKS WHEAT
La inteligencia artificial y sus modelos de redes neuronales
Alejandro E. Rodríguez-Sánchez (2024, [Artículo, Artículo])
Este artículo revisa qué son los modelos en la inteligencia artificial (IA), con especial énfasis en las redes neuronales artificiales y su capacidad para simular y predecir fenómenos complejos. Ejemplifica la aplicación multidisciplinaria de la IA en campos como la astronomía, destacando la imagen del primer agujero negro, y en biología molecular, con los avances de AlphaFold. Se resalta la necesidad de entender los modelos de IA más allá de su función técnica, subrayando su contribución al progreso científico. Concluye que la IA, a través de sus modelos, desempeña un papel crucial en el estudio de las regularidades de la naturaleza y de la sociedad.
Inteligencia artificial Redes neuronales artificiales Modelos cientificos Tecnología INGENIERÍA Y TECNOLOGÍA INGENIERÍA Y TECNOLOGÍA
Redesigning crop varieties to win the race between climate change and food security
Kevin Pixley Jill Cairns Santiago Lopez-Ridaura Chris Ojiewo Baloua Nébié Godfrey Asea Biswanath Das Benoit Joseph Batieno Clare Mukankusi Sarah Hearne Kanwarpal Dhugga Sieglinde Snapp Ernesto Adair Zepeda Villarreal (2023, [Artículo])
Crop Breeding Expert Survey CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE CROPPING SYSTEMS FOOD SECURITY CROPS
Gerald Blasch (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA REMOTE SENSING WHEAT CROPS DISEASES
Genomic prediction of hybrid crops accounting for non additive genetic effects
David González-Diéguez (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MARKER-ASSISTED SELECTION HYBRIDS MAIZE GENOMES GENETICS GENETIC VARIANCE CROPS