Filtrar por:
Tipo de publicación
- Artículo (36)
- Objeto de congreso (13)
- Capítulo de libro (3)
Autores
- sridhar bhavani (11)
- Ravi Singh (8)
- JULIO HUERTA_ESPINO (5)
- CAIXIA LAN (3)
- Leonardo Abdiel Crespo Herrera (3)
Años de Publicación
Editores
- MDPI (1)
- Multidisciplinary Digital Publishing Institute (1)
- Pontificia Universidad Catolica de Valparaiso (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (48)
- Repositorio Institucional CIBNOR (2)
- Repositorio IPICYT (1)
- Repositorio Institucional CICY (1)
Tipos de Acceso
- oa:openAccess (52)
Idiomas
- eng (51)
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (48)
- DISEASE RESISTANCE (26)
- WHEAT (18)
- RUSTS (14)
- BREEDING (8)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
SERGIO GARCIA LAYNES VIRGINIA AURORA HERRERA VALENCIA Lilia Guadalupe Tamayo Torres VERONICA LIMONES BRIONES FELIPE ALONSO BARREDO POOL FRAY MARTIN BAAS ESPINOLA Angel Alpuche-Solis CARLOS ALBERTO PUCH HAU SANTY PERAZA ECHEVERRIA (2022, [Artículo])
WRKY transcription factors (TFs) play key roles in plant defense responses through phytohormone signaling pathways. However, their functions in tropical fruit crops, especially in banana, remain largely unknown. Several WRKY genes from the model plants rice (OsWRKY45) and Arabidopsis (AtWRKY18, AtWRKY60, AtWRKY70) have shown to be attractive TFs for engineering disease resistance. In this study, we isolated four banana cDNAs (MaWRKY18, MaWRKY45, MaWRKY60, and MaWRKY70) with homology to these rice and Arabidopsis WRKY genes. The MaWRKY cDNAs were isolated from the wild banana Musa acuminata ssp. malaccensis, which is resistant to several diseases of this crop and is a progenitor of most banana cultivars. The deduced amino acid sequences of the four MaWRKY cDNAs revealed the presence of the conserved WRKY domain of ~60 amino acids and a zinc-finger motif at the N-terminus. Based on the number of WRKY repeats and the structure of the zinc-finger motif, MaWRKY18 and MaWRKY60 belong to group II of WRKY TFs, while MaWRKY45 and MaWRKY70 are members of group III. Their corresponding proteins were located in the nuclei of onion epidermal cells and were shown to be functional TFs in yeast cells. Moreover, expression analyses revealed that the majority of these MaWRKY genes were upregulated by salicylic acid (SA) or methyl jasmonate (MeJA) phytohormones, although the expression levels were relatively higher with MeJA treatment. The fact that most of these banana WRKY genes were upregulated by SA or MeJA, which are involved in systemic acquired resistance (SAR) or induced systemic resistance (ISR), respectively, make them interesting candidates for bioengineering broad-spectrum resistance in this crop. © 2022 by the authors.
BANANA TRANSCRIPTION FACTOR WRKY DEFENSE PHYTOHORMONES SALICYLIC ACID METHYL JASMONATE SAR ISR BROAD-SPECTRUM RESISTANCE BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA GENÉTICA GENÉTICA MOLECULAR DE PLANTAS GENÉTICA MOLECULAR DE PLANTAS
Shailendra Sharma deepmala sehgal Apekshita Singh Shailendra Goel SoomNath Raina (2022, [Artículo])
Corona Viruses Genome Structure Novel Mutations Resistance to Vaccines SARS-CoV-2 CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA COVID-19 ANTIBODY FORMATION LIFE CYCLE VACCINATION VACCINES LINEAGE
Alejandra Miranda Carrazco Yendi Navarro-Noya Bram Govaerts Nele Verhulst Luc Dendooven (2022, [Artículo])
Plant-associated microorganisms that affect plant development, their composition, and their functionality are determined by the host, soil conditions, and agricultural practices. How agricultural practices affect the rhizosphere microbiome has been well studied, but less is known about how they might affect plant endophytes. In this study, the metagenomic DNA from the rhizosphere and endophyte communities of root and stem of maize plants was extracted and sequenced with the “diversity arrays technology sequencing,” while the bacterial community and functionality (organized by subsystems from general to specific functions) were investigated in crops cultivated with or without tillage and with or without N fertilizer application. Tillage had a small significant effect on the bacterial community in the rhizosphere, but N fertilizer had a highly significant effect on the roots, but not on the rhizosphere or stem. The relative abundance of many bacterial species was significantly different in the roots and stem of fertilized maize plants, but not in the unfertilized ones. The abundance of N cycle genes was affected by N fertilization application, most accentuated in the roots. How these changes in bacterial composition and N genes composition might affect plant development or crop yields has still to be unraveled.
Bacterial Community Structure DArT-Seq Bacterial Community Functionality Genes Involved in N Cycling CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURAL PRACTICES MAIZE RHIZOSPHERE STEMS NITROGEN FERTILIZERS
Rust research to enhance resistance durability
sridhar bhavani (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RUSTS DISEASE RESISTANCE SPRING WHEAT GENETIC DIVERSITY (AS RESOURCE) ADULT PLANT RESISTANCE
sridhar bhavani (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RUSTS DISEASE RESISTANCE WHEAT GENETIC DIVERSITY (AS RESOURCE) ADULT PLANT RESISTANCE
Rust research to enhance resistance durability
sridhar bhavani (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RUSTS DISEASE RESISTANCE SPRING WHEAT GENETIC DIVERSITY (AS RESOURCE) ADULT PLANT RESISTANCE
SERGIO GARCIA LAYNES VIRGINIA AURORA HERRERA VALENCIA Lilia Guadalupe Tamayo Torres VERONICA LIMONES BRIONES FELIPE ALONSO BARREDO POOL FRAY MARTIN BAAS ESPINOLA Ángel Gabriel Alpuche Solís CARLOS ALBERTO PUCH HAU SANTY PERAZA ECHEVERRIA (2022, [Artículo])
"WRKY transcription factors (TFs) play key roles in plant defense responses through phytohormone signaling pathways. However, their functions in tropical fruit crops, especially in banana, remain largely unknown. Several WRKY genes from the model plants rice (OsWRKY45) and Arabidopsis (AtWRKY18, AtWRKY60, AtWRKY70) have shown to be attractive TFs for engineering disease resistance. In this study, we isolated four banana cDNAs (MaWRKY18, MaWRKY45, MaWRKY60, and MaWRKY70) with homology to these rice and Arabidopsis WRKY genes. The MaWRKY cDNAs were isolated from the wild banana Musa acuminata ssp. malaccensis, which is resistant to several diseases of this crop and is a progenitor of most banana cultivars. The deduced amino acid sequences of the four MaWRKY cDNAs revealed the presence of the conserved WRKY domain of ~60 amino acids and a zinc-finger motif at the N-terminus. Based on the number of WRKY repeats and the structure of the zinc-finger motif, MaWRKY18 and MaWRKY60 belong to group II of WRKY TFs, while MaWRKY45 and MaWRKY70 are members of group III. Their corresponding proteins were located in the nuclei of onion epidermal cells and were shown to be functional TFs in yeast cells. Moreover, expression analyses revealed that the majority of these MaWRKY genes were upregulated by salicylic acid (SA) or methyl jasmonate (MeJA) phytohormones, although the expression levels were relatively higher with MeJA treatment. The fact that most of these banana WRKY genes were upregulated by SA or MeJA, which are involved in systemic acquired resistance (SAR) or induced systemic resistance (ISR), respectively, make them interesting candidates for bioengineering broad-spectrum resistance in this crop."
Banana Transcription factor WRKY Defense phytohormones Salicylic acid Methyl jasmonate SAR ISR Broad-spectrum resistance BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA GENÉTICA GENÉTICA
XUECAI ZHANG Yong Zhang (2022, [Artículo])
Fusarium Head Blight Resistance Fusarium verticillioides QTL Mapping Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA FUSARIUM QUANTITATIVE TRAIT LOCI MAPPING TRITICUM AESTIVUM
Min Lin Sebastian Michel Hermann Buerstmayr sridhar bhavani Morten Lillemo (2023, [Artículo])
Wheat Yellow Rust Adult Plant Resistance Genome-Wide Association Study CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RUSTS QUANTITATIVE TRAIT LOCI SPRING WHEAT BREEDING LINES