Filtrar por:
Tipo de publicación
- Artículo (5)
Autores
- Aaron Azael Lopez Cano (1)
- Abel Jaime Leal González (1)
- Agustin L. Herrera-May (1)
- Ao Zhang (1)
- Collins Juma (1)
Años de Publicación
Editores
- Indian Academy of Sciences (1)
- MDPI (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (3)
- CIATEQ Digital (1)
- Repositorio Institucional CIBNOR (1)
Tipos de Acceso
- oa:openAccess (5)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (3)
- BACTERIOLOGÍA (2)
- MAIZE (2)
- OTRAS (2)
- ASSOCIATION MAPPING (1)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
5 resultados, página 1 de 1
Weed management and tillage effect on rainfed maize production in three agro-ecologies in Mexico
Simon Fonteyne Abel Jaime Leal González Rausel Ovando Ravi Gopal Singh Nele Verhulst (2022, [Artículo])
Maize (Zea mays L.) is grown in a wide range of agro-ecological environments and production systems across Mexico. Weeds are a major constraint on maize grain yield, but knowledge regarding the best weed management methods is lacking. In many production systems, reducing tillage could lessen land degradation and production costs, but changes in tillage might require changes in weed management. This study evaluated weed dynamics and rainfed maize yield under five weed management treatments (pre-emergence herbicide, post-emergence herbicide, pre-emergence + post-emergence herbicide, manual weed control, and no control) and three tillage methods (conventional, minimum and zero tillage) in three agro-ecologically distinct regions of the state of Oaxaca, Mexico, in 2016 and 2017. In the temperate Mixteca region, weeds reduced maize grain yields by as much as 92% and the long-growing season required post-emergence weed control, which gave significantly higher yields. In the hot, humid Papaloapan region, weeds reduced maize yields up to 63% and pre-emergence weed control resulted in significantly higher yields than treatments with post-emergence control only. In the semi-arid Valles Centrales region, weeds reduced maize yields by as much as 65%, but weed management was not always effective in increasing maize yield or net profitability. The most effective weed management treatments tended to be similar for the three tillage systems at each site, although weed pressure and the potential yield reduction by weeds tended to be higher under zero tillage than minimum or conventional tillage. No single best option for weed management was found across sites or tillage systems. More research, in which non-chemical methods should not be overlooked, is thus needed to determine the most effective weed management methods for the diverse maize production systems across Mexico.
Corn Integrated Weed Management Manual Weed Control CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE WEED CONTROL MINIMUM TILLAGE ZERO TILLAGE
XUECAI ZHANG Ao Zhang (2023, [Artículo])
Genome-Wide Association Study Genomic Prediction Ear Height Tassel Branch Number Waxy Corn CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOMICS PLANT HEIGHT SWEET CORN WAXY MAIZE
Aaron Azael Lopez Cano VERONICA MARTINEZ AGUILAR Mariana Peña-Juárez Ricardo López Esparza Enrique Delgado Alvarado Emmanuel Gutierrez MAYRA DEL ANGEL MONROY Elias Perez Agustin L. Herrera-May JOSE AMIR GONZALEZ CALDERON (2023, [Artículo])
We explored the potential of different nanoparticles (TiO2, CaCO3, and Al2O3), considering their pure form and modified with cinnamon essential oil (CEO). These materials were characterized using various techniques, including FTIR spectroscopy, XRD analysis, TGA, and SEM. The interaction between CEO and nanoparticles changed depending on the nanoparticle type. Al2O3 nanoparticles exhibited the strongest interaction with CEO, increasing their antioxidant capacity by around 40% and their transfer of antimicrobial properties, particularly against Gram-negative bacteria. In contrast, TiO2 and CaCO3 nanoparticles showed limited interaction with CEO, resulting in lower antioxidant capacity and antimicrobial activity. Incorporating pure and CEO-modified nanoparticles into polylactic acid (PLA) films improved their mechanical and thermal properties, which are suitable for applications requiring greater strength. This research highlights the potential of metal oxide nanoparticles to enhance the antimicrobial and antioxidant capabilities of polymers. In addition, incorporating cinnamon essential oil can increase the antioxidant and antimicrobial effectiveness of the metal oxide nanoparticles and improve the mechanical and thermal properties of PLA films. Thus, these PLA films exhibit favorable characteristics for active packaging applications.
Author contributions: conceptualization, V.M.-A. and J.A.G.-C.; formal analysis, A.A.L.-C., V.M.-A., M.G.P.-J. and M.D.A.-M.; funding acquisition, A.L.H.-M.; methodology, A.A.L.-C. and V.M.-A.; investigation, E.P.; supervision, R.L.-E., E.D.-A., and E.J.G.-C.; validation, A.L.H.-M. and J.A.G.-C.; writing—original draft, V.M.-A.; writing—review and editing, M.G.P.-J. and J.A.G.-C. All authors have read and agreed to the published version of the manuscript.
Funding: J.A. Gonzalez-Calderon thanks CONAHCYT for supporting the Catedras-CONAHCYT Program, and Verónica Martinez thanks CONAHCYT for the Doctoral Fellowship. The authors also want to thank CONAHCYT for funding the project CF2019 265239 “Ciencia de Frontera”, which made this work possible.
Institutional review board statement: Not applicable.
Informed consent statement: Not applicable.
Data availability statement: Data is contained within the article.
Acknowledgments: The authors acknowledge Claudia Hernández and Rosa Lina Tovar for their support during the XRD and SEM analyses.
Conflicts of interest: The authors declare no conflict of interest.
Disclaimer/publisher’s note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Cinnamon essential oil Antioxidant activity Antimicrobial properties Nanoparticles Polylactic acid films INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS OTRAS ESPECIALIDADES TECNOLÓGICAS OTRAS OTRAS
David Berger Yoseph Beyene Collins Juma Suresh L.M. Manje Gowda (2023, [Artículo])
Gray Leaf Spot Northern Corn Leaf Blight CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE LEAF SPOTS QUANTITATIVE TRAIT LOCI ASSOCIATION MAPPING GENOME-WIDE ASSOCIATION STUDIES
RICARDO VAZQUEZ JUAREZ TANIA ZENTENO SAVIN ENRIQUE MORALES BOJORQUEZ Elvia Pérez Rosales Lilia Alcaráz Meléndez María Esther Puente Eduardo Quiroz Guzmán (2017, [Artículo])
"In this communication, the diversity and beneficial characteristics of endophytic bacteria have been studied in Simmondsia chinensis that has industrial importance because of the quality of its seed oil. Endophytes were isolated (N = 101) from roots of the jojoba plants collected, of which eight were identified by partial sequencing of the 16S rDNA gene. The isolated bacteria were Bacillus sp., Methylobacterium aminovorans, Oceanobacillus kimchi, Rhodococcus pyridinivorans and Streptomyces sp. All isolates had at least one positive feature, characterizing them as potential plant growth promoting bacteria. In this study, R. pyridinivorans and O. kimchi are reported as plant growth promoters."
Endophytic bacteria, plant growth promoters, Simmondsia chinensis, seed oil BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA MICROBIOLOGÍA BACTERIOLOGÍA BACTERIOLOGÍA