Filtros
Filtrar por:
Tipo de publicación
- Objeto de congreso (4)
- Artículo (3)
Autores
- Berhanu Tadesse Ertiro (3)
- Dan Makumbi (2)
- Anani Bruce (1)
- Aparna Das (1)
- Jason Donovan (1)
Años de Publicación
Editores
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (5)
- Repositorio Institucional CICESE (2)
Tipos de Acceso
- oa:openAccess (7)
Idiomas
- eng (6)
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (5)
- MAIZE (5)
- OCEANOGRAFÍA (4)
- TESTING (4)
- CIENCIAS DE LA TIERRA Y DEL ESPACIO (2)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
7 resultados, página 1 de 1
Stage-gate advancement process in maize breeding
Berhanu Tadesse Ertiro (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA PLANT BREEDING MAIZE TESTING
Testing innovations for adoption of newer and more adapted maize varieties
Michael Ndegwa Pieter Rutsaert Jason Donovan Jordan Chamberlin (2023, [Objeto de congreso])
Changing Production Conditions Genetic Innovations Maize Hybrids CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TESTING MAIZE VARIETIES YIELDS FARMERS EXPERIMENTATION
Stage-gate advancement and testing strategies for Product Development at CIMMYT
Berhanu Tadesse Ertiro (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA STAGES BREEDING MAIZE TESTING
Product development for Eastern Africa: EA-PP1
Berhanu Tadesse Ertiro Aparna Das Yoseph Beyene Dan Makumbi Manje Gowda Suresh L.M. Anani Bruce Walter Chivasa Vijay Chaikam Juan Burgueño Prasanna Boddupalli (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA PRODUCT DEVELOPMENT TESTING DATA MAIZE
Lewis Machida Dan Makumbi (2023, [Artículo])
Maize Variety Testing Multienvironment Trial Analysis Relative Maturity REMATTOOL-R Superior Varieties Identification CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE VARIETIES MATURITY IDENTIFICATION YIELDS
MARKUS SEBASTIAN GROSS (2016, [Artículo])
In previous work, the authors demonstrated how data from climate simulations can be utilized to estimate regional wind power densities. In particular, it was shown that the quality of wind power densities, estimated from the UPSCALE global dataset in offshore regions of Mexico, compared well with regional high resolution studies. Additionally, a link between surface temperature and moist air density in the estimates was presented. UPSCALE is an acronym for UK on PRACE (the Partnership for Advanced Computing in Europe)-weather-resolving Simulations of Climate for globAL Environmental risk. The UPSCALE experiment was performed in 2012 by NCAS (National Centre for Atmospheric Science)- Climate, at the University of Reading and the UK Met Office Hadley Centre. The study included a 25.6-year, five-member ensemble simulation of the HadGEM3 global atmosphere, at 25km resolution for present climate conditions. The initial conditions for the ensemble runs were taken from consecutive days of a test configuration. In the present paper, the emphasis is placed on the single climate run for a potential future climate scenario in the UPSCALE experiment dataset, using the Representation Concentrations Pathways (RCP) 8.5 climate change scenario. Firstly, some tests were performed to ensure that the results using only one instantiation of the current climate dataset are as robust as possible within the constraints of the available data. In order to achieve this, an artificial time series over a longer sampling period was created. Then, it was shown that these longer time series provided almost the same results than the short ones, thus leading to the argument that the short time series is sufficient to capture the climate. Finally, with the confidence that one instantiation is sufficient, the future climate dataset was analysed to provide, for the first time, a projection of future changes in wind power resources using the UPSCALE dataset. It is hoped that this, in turn, will provide some guidance for wind power developers and policy makers to prepare and adapt for climate change impacts on wind energy production. Although offshore locations around Mexico were used as a case study, the dataset is global and hence the methodology presented can be readily applied at any desired location. © Copyright 2016 Gross, Magar. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reprod
atmosphere, climate change, Europe, Mexico, sampling, time series analysis, university, weather, wind power, climate, risk, theoretical model, wind, Climate, Models, Theoretical, Risk, Wind CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA
MAURO WILFRIDO SANTIAGO GARCIA (2019, [Artículo])
Gap wind jets (Tehuano winds) trigger supersquirts of colder water and mesoscale asymmetric dipoles in the Gulf of Tehuantepec (GT). However, the effects of successive gap wind jets on dipoles and their effects inside eddies have not yet been studied. Based on the wind fields, geostrophic currents, and surface drifter dispersion, this research documented three dipoles triggered and modified by Tehuano winds. Once a dipole develops, successive gap wind jets strengthen the vortices, and the anticyclonic eddy migrates southwestward while the cyclonic eddy is maintained on the east side of the GT. During the wind relaxation stage, the cyclonic eddy may propagate westward, but due to the subsequent re-intensification of the Tehuano winds, the vortex could break down, as was suggested by surface drifter dispersion pattern and geostrophic field data. The effect of the Tehuano winds was evaluating via eddy-Ekman pumping. Under Tehuano wind conditions, Ekman downwelling (upwelling) inside the anticyclonic (cyclonic) eddies may reach ~ -2.0 (0.5) m d-1 and decrease as the wind weakens. In the absence of Tehuano winds, Ekman downwelling inside the anticyclonic eddy was ~ 0.1 (-0.1) m d-1. The asymmetry of downwelling and upwelling inside eddies during Tehuano wind events may be associated with Tehuano wind forcing. © 2019 Santiago-García et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
article, dipole, leisure, Mexico, cold, ecosystem, factual database, geographic mapping, hurricane, Mexico, satellite imagery, season, water flow, wind, sea water, Cold Temperature, Cyclonic Storms, Databases, Factual, Ecosystem, Geographic Mapping, CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA