Filtrar por:
Tipo de publicación
- Artículo (60)
- Tesis de maestría (13)
- Documento de trabajo (13)
- Libro (9)
- Tesis de doctorado (8)
Autores
- ML JAT (7)
- Tek Sapkota (7)
- C.M. Parihar (6)
- Hari Sankar Nayak (6)
- Mahesh Gathala (5)
Años de Publicación
Editores
- Centro de Investigaciones y Estudios Superiores en Antropología Social (6)
- Instituto Mexicano de Tecnología del Agua (5)
- Universidad de Guanajuato (4)
- Instituto Tecnológico y de Estudios Superiores de Monterrey (3)
- Universidad Autónoma Metropolitana (México). (3)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (47)
- Repositorio institucional del IMTA (18)
- Repositorio Institucional CICESE (10)
- REPOSITORIO INSTITUCIONAL DEL CIESAS (6)
- Repositorio Institucional Zaloamati (5)
Tipos de Acceso
- oa:openAccess (113)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (56)
- CIENCIAS SOCIALES (18)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (15)
- INGENIERÍA Y TECNOLOGÍA (11)
- CLIMATE CHANGE (10)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Sajad Sabzi Razieh Pourdarbani Mohammad Hossein Rohban Alejandro Fuentes_Penna José Luis Hernández-Hernández Mario Hernández Hernández (2021, [Artículo])
Improper usage of nitrogen in cucumber cultivation causes nitrate accumulation in the fruit and results in food poisoning in humans; therefore, mandatory evaluation of food products becomes inevitable. Hyperspectral imaging has a very good ability to evaluate the quality of fruits and vegetables in a non-destructive manner. The goal of the present paper was to identify excess nitrogen in cucumber plants. To obtain a reliable result, the majority voting method was used, which takes into account the unanimity of five classifiers, namely, the hybrid artificial neural network¿imperialism competitive algorithm (ANN-ICA), the hybrid artificial neural network¿harmonic search (ANN-HS) algorithm, linear discrimination analysis (LDA), the radial basis function network (RBF), and the Knearest- neighborhood (KNN). The wavelengths of 723, 781, and 901 nm were determined as optimal wavelengths using the hybrid artificial neural network¿biogeography-based optimization (ANNBBO) algorithm, and the performance of classifiers was investigated using the optimal spectrum. The results of a t-test showed that there was no significant difference in the precision of the algorithm when using the optimal wavelengths and wavelengths of the whole range. The correct classification rate of the classifiers ANN-ICA, ANN-HS, LDA, RBF, and KNN were 96.14%, 96.11%, 95.73%, 64.03%, and 95.24%, respectively. The correct classification rate of majority voting (MV) was 95.55% for test data in 200 iterations, which indicates the system was successful in distinguishing nitrogen-rich leaves from leaves with a standard content of nitrogen.
artificial neural network cucumber hyperspectral imaging majority voting nitrogen INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ALIMENTOS
ML JAT Rajeev Gupta (2022, [Artículo])
Decomposition Rate Nitrogen Release Placement Effect CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP RESIDUES DEGRADATION NITROGEN PLACEMENT
Noel Ndlovu Vijay Chaikam Berhanu Tadesse Ertiro Biswanath Das Yoseph Beyene Charles Spillane Prasanna Boddupalli Manje Gowda (2023, [Artículo])
Grain Yield Low Soil Nitrogen CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GRAIN NITROGEN SOIL CHEMICOPHYSICAL PROPERTIES MAIZE QUANTITATIVE TRAIT LOCI
C.M. Parihar Dipaka Ranjan Sena Prakash Chand Ghasal Shankar Lal Jat Yashpal Singh Saharawat Mahesh Gathala Upendra Singh Hari Sankar Nayak (2024, [Artículo])
Context: Agricultural field experiments are costly and time-consuming, and their site-specific nature limits their ability to capture spatial and temporal variability. This hinders the transfer of crop management information across different locations, impeding effective agricultural decision-making. Further, accurate estimates of the benefits and risks of alternative crop and nutrient management options are crucial for effective decision-making in agriculture. Objective: The objective of this study was to utilize the Crop Environment Resource Synthesis CERES-Wheat model to simulate crop growth, yield, and nitrogen dynamics in a long-term conservation agriculture (CA) based wheat system. The study aimed to calibrate the model using data from a field experiment conducted during the 2019-20-2020-21 growing seasons and evaluation it with independent data from the year 2021–22. Method: Crop simulation models, such as the Crop Environment Resource Synthesis CERES-Wheat (DSSAT v 4.8), may provide valuable insights into crop growth and nitrogen dynamics, enabling decision makers to understand and manage production risk more effectively. Therefore, the present study employed the CERES-Wheat (DSSAT v 4.8) model and calibrated it using field data, including plant phenological phases, leaf area index, aboveground biomass, and grain yield from the 2019-20-2020-21 growing seasons. An independent dataset from the year 2021–22 was used for model evaluation. The model was used to investigate the relationship between growing degree days (GDD), temperature, nitrate and ammonical concentration in soil, and nitrogen uptake by the crop. Additionally, the study explored the impact of contrasting tillage practices and fertilizer nitrogen management options on wheat yields. The experimental site is situated at ICAR-Indian Agricultural Research Institute (IARI), New Delhi, representing Indian Trans-Gangetic Plains Zone (28o 40’N latitude, 77o 11’E longitude and an altitude of 228 m above sea level). The treatments consist of four nitrogen management options, viz., N0 (zero nitrogen), N150 (150 kg N ha−1 through urea), GS (Green seeker based urea application) and USG (urea super granules @150 kg N ha−1) in two contrasting tillage systems, i.e., CA-based zero tillage (ZT) and conventional tillage (CT). Result: The outcomes exhibited favorable agreement between the model’s simulations and the observed data for crop phenology (With less than 2 days variation in 50% onset of flowering), grain and biomass yield (Root mean square error; RMSE 336 kg ha−1 and 649 kg ha−1, respectively), and leaf area index (LAI) (RMSE 0.28 & normalized RMSE; nRMSE 6.69%). The model effectively captured the nitrate-N (NO3−-N) dynamics in the soil profile, exhibiting a remarkable concordance with observed data, as evident from its low RMSE = 12.39 kg ha−1 and nRMSE = 13.69%. Moreover, as it successfully simulated the N balance in the production system, the nitrate leaching and ammonia volatilization pattern as described by the model are highly useful to understand these critical phenomena under both conventional tillage (CT) and CA-based Zero Tillage (ZT) treatments. Conclusion: The study concludes that the DSSAT-CERES-Wheat model has significant potential to assess the impacts of tillage and nitrogen management practices on crop growth, yield, and soil nitrogen dynamics in the western Indo-Gangetic Plains (IGP) region. By providing reliable forecasts within the growing season, this modeling approach can facilitate better planning and more efficient resource management. Future implications: The successful implementation of the DSSAT-CERES-Wheat model in this study highlights its applicability in assessing crop performance and soil dynamics. Future research should focus on expanding the model’s capabilities by reducing its sensitivity to initial soil nitrogen levels to refine its predictions further. Moreover, the model’s integration with decision support systems and real-time data can enhance its usefulness in aiding agricultural decision-making and supporting sustainable crop management practices.
Nitrogen Dynamics Mechanistic Crop Growth Models Crop Simulation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA NITROGEN CONSERVATION AGRICULTURE WHEAT MAIZE CROP GROWTH RATE SIMULATION MODELS
Low nitrogen narrows down phenotypic diversity in durum wheat
Tesfaye Geleta Aga Bekele Abeyo (2023, [Artículo])
Clusters Durum Wheat Nitrogen Efficiency CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA HARD WHEAT GENETIC DIVERGENCE NORMALIZED DIFFERENCE VEGETATION INDEX NITROGEN PRINCIPAL COMPONENT ANALYSIS
Accumulation of wheat phenolic acids under different nitrogen rates and growing environments
Wenfei Tian Yong Zhang Zhonghu He (2022, [Artículo])
Functional Wheat Trans-Ferulic Acid Nitrogen Management Environment Interaction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT PHENOLIC ACIDS NITROGEN ENVIRONMENT ANTIOXIDANTS
Achla Sharma Juan Burgueño Prashant Vikram Nitika Sandhu Satinder Kaur Parveen Chhuneja (2023, [Artículo])
Plant Nitrogen Use Efficiency Pre-Breeding Lines Genome-Wide Association Study Marker Trait Association CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT PRE-BREEDING BREEDING LINES NITROGEN LANDRACES GENETIC MARKERS
C.M. Parihar Hari Sankar Nayak Dipaka Ranjan Sena Renu Pandey Mahesh Gathala ML JAT (2023, [Artículo])
The Indo-Gangetic Plains (IGP) in north-west (NW) India are facing a severe decline in ground water due to prevalent rice-based cropping systems. To combat this issue, conservation agriculture (CA) with an alternative crop/s, such as maize, is being promoted. Recently, surface drip fertigation has also been evaluated as a viable option to address low-nutrient use efficiency and water scarcity problems for cereals. While the individual benefits of CA and sub-surface drip (SSD) irrigation on water economy are well-established, information regarding their combined effect in cereal-based systems is lacking. Therefore, we conducted a two-year field experiment in maize, under an ongoing CA-based maize-wheat system, to evaluate the complementarity of CA with SSD irrigation through two technological interventions–– CA+ (residue retained CA + SSD), PCA+ (partial CA without residue + SSD) – at different N rates (0, 120 and 150 kg N ha-1) in comparison to traditional furrow irrigated (FI) CA and conventional tillage (CT) at 120 kg N ha-1. Our results showed that CA+ had the highest grain yield (8.2 t ha-1), followed by PCA+ (8.1 t ha-1). The grain yield under CA+ at 150 kg N ha-1 was 27% and 30% higher than CA and CT, respectively. Even at the same N level (120 kg N ha-1), CA+ outperformed CA and CT by 16% and 18%, respectively. The physiological performance of maize also revealed that CA+ based plots with 120 kg N ha-1 had 12% and 3% higher photosynthesis rate at knee-high and silking, respectively compared to FI-CA and CT. Overall, compared to the FI-CA and CT, SSD-based CA+ and PCA+ saved 54% irrigation water and increased water productivity (WP) by more than twice. Similarly, a greater number of split N application through fertigation in PCA+ and CA+ increased agronomic nitrogen use efficiency (NUE) and recover efficiency by 8–19% and 14–25%, respectively. Net returns from PCA+ and CA+ at 150 kg N ha-1 were significantly higher by US$ 491 and 456, respectively than the FI-CA and CT treatments. Therefore, CA coupled with SSD provided tangible benefits in terms of yield, irrigation water saving, WP, NUE and profitability. Efforts should be directed towards increasing farmers’ awareness of the benefits of such promising technology for the cultivating food grains and commercial crops such as maize. Concurrently, government support and strict policies are required to enhance the system adaptability.
Net Returns Subsurface Drip Irrigation Subsurface Drip Fertigation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA EFFICIENCY GRAIN NITROGEN PHOTOSYNTHESIS PHYSIOLOGY WATER SUPPLY CONSERVATION AGRICULTURE CONVENTIONAL TILLAGE FERTIGATION GROUNDWATER NITROGEN-USE EFFICIENCY WATER PRODUCTIVITY
RODOLFO ANTONIO SAN JUAN SAN JUAN (2021, [Tesis de doctorado])
"El objetivo general de la presente tesis es mostrar las diferentes formas en que los niños jornaleros migrantes del Alto Balsas, Guerrero construyen una visión propia sobre la vulnerabilidad social a través de sus nociones locales basadas en su cotidianidad y la reproducción de sus valores culturales dentro del campamento La Media Luna, en el municipio de Autlán, Jalisco, lugar de atracción de familias jornaleras que se dedican al corte de caña."
Niños -- Guerrero Niños -- Emigración e inmigración -- México Nahuas -- Guerrero Indios de México -- Agricultura Agricultura -- Jalisco CIENCIAS SOCIALES CIENCIAS SOCIALES
Estudio de persistencia de la sequía en el norte y centro de México
ISRAEL VELASCO VELASCO Eduardo Alexis Cervantes Carretero DAVID ORTEGA GAUCIN (2013, [Documento de trabajo])
Tabla de contenido: Introducción – Antecedentes – Conceptos y enfoques de la proyección hidrológica a futuro: modelo autorregresivo, modelo de medias móviles, modelo autorregresivo de media móvil – Índices de estado – Índice hidrológico de sequía – Resultados – Conclusiones y recomendaciones.
En el acontecer natural hidrometeorológico, la estimación de eventos futuros tiene un elevado nivel de incertidumbre, tanto más grande en cuanto más a futuro. Sin embargo, algunos de estos fenómenos –la lluvia y el escurrimiento superficial-, pueden mostrar un cierto nivel de persistencia, entendido el término como la continuación de condiciones iguales o similares o del mismo tipo, lo cual se puede tratar con algunas técnicas estadístico-matemáticas, para intentar estimar su comportamiento futuro. Este trabajo incursiona sobre la estimación de la persistencia hidrológica, como un elemento de posible aplicación para apoyar la formulación de escenarios de sequía. Dicho trabajo tiene como fin estudiar, bajo diversos enfoques (Hurst, índices de severidad...), el fenómeno de la persistencia de las sequías y aplicarla a series hidrometeorológicas en alguna cuenca del norte y centro de México.
Introducción – Antecedentes – Conceptos y enfoques de la proyección hidrológica a futuro: modelo autorregresivo, modelo de medias móviles, modelo autorregresivo de media móvil – Índices de estado – Índice hidrológico de sequía – Resultados – Conclusiones y recomendaciones.
Sequía Fenómeno de El Niño Corrientes cálidas Corrientes frías Series hidrometeorológicas Informes de proyectos Presa Lázaro Cárdenas, Durango CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA