Búsqueda avanzada


Área de conocimiento




3 resultados, página 1 de 1

Natural disasters and economic growth: a synthesis of empirical evidence

Fernando Antonio Ignacio González (2023, [Artículo, Artículo])

Natural disasters pose a serious threat globally and, in the future, their frequency and severity are expected to increase due to climate change. Empirical evidence has reported conflicting results in terms of the impact of disasters on economic growth. In this context, the present work seeks to synthesize the recent empirical evidence related to this topic. More than 650 estimates, from studies published in the last five years (2015-2020), are used. Meta-analysis and meta-regression techniques are employed. The review includes three sources (Scopus, Science Direct, and Google Scholar). The results identified the existence of a negative and significant combined effect (-0.015). Developing countries are especially vulnerable to disasters. The negative impact is greater for disasters that occurred in the last decade -in relation to previous disasters-. These findings constitute a call for attention in favor of mitigation and adaptation policies.

Disasters GDP meta-analysis meta-regression desastres crecimiento PIB meta-análisis meta-regresión CIENCIAS SOCIALES CIENCIAS SOCIALES

Monitoreo e Instalación visual de señales a un motor eléctrico de inducción de instalación trifásica de forma jaula de ardilla, mediante la implementación de tecnología industria 4.0

Luis Ricardo Uribe Dávila (2023, [Tesis de maestría])

Vivimos la industria 4.0, misma que no es nueva, ya que sus orígenes se remontan a finales de la década de los 2000, en Alemania. Un pilar de la industria 4.0 es el análisis de datos, conocido como Big Data. El conocer los datos de un proceso, de un estudio, ayuda en gran medida a predecir el comportamiento que tendrá el proceso o la máquina a estudiar en un periodo a corto o mediano plazo. En el presente proyecto se analizan los datos arrojados por un motor eléctrico de corriente alterna, del tipo inducción, jaula de ardilla. El motor está diseñado para trabajar de manera continua, sin embargo, el uso que se le da, es meramente educativo; es decir, no sobre pasa las 15 horas por semana de uso. Mediante la toma de datos de las tres fases de corriente RMS o corriente de valor eficaz que posee el motor eléctrico que se realizará con el microcontrolador Arduino UNO, se analizarán los mismos mediante el software de cómputo numérico MATLAB, ordenando los datos, descartando valores que no aporten información relevante para lograr la predicción de datos. Por último, se llevará a conocer este proyecto a la carrera mecatrónica, área sistemas de manufactura flexible y área automatización, con el fin de que puedan observar de una mejor manera la aplicación y funcionamiento de uno de los pilares de la actual industria 4.0.

We live in industry 4.0, which is not new, since its origins date back to the late 2000s, in Germany. One pillar of industry 4.0 is data analysis, known as Big Data. Knowing the data of a process, of a study, helps greatly to predict the behavior that the process or machine will have to study in a short- or medium-term period. This project analyzes the data released by an electric motor of alternating current, of the type induction, squirrel cage. The engine is designed to work continuously, however, the use given to it is merely educational, that is; only not over spends 15 hours per week of use. By taking data from the three phases of RMS current or effective value current of the electric motor that will be made with the Arduino UNO micro controller, they will be analyzed using MATLAB numerical computing software, ordering the data, discarding values that do not provide relevant information to achieve data prediction. Finally, this project will be presented to the mechatronics career, flexible manufacturing systems area and automation area, so that they can observe in a better way the application and operation of one of the pillars of the current industry 4.0.

Mantenimiento predictivo Regresión lineal Industria 4.0 Big data Corriente RMS Predictive maintenance Linear regression Industry 4.0 Big data RMS Current INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS OTRAS ESPECIALIDADES TECNOLÓGICAS OTRAS OTRAS

Predicción de la evapotranspiración de referencia mediante redes neuronales artificiales

JUAN MANUEL GONZALEZ CAMACHO ROCIO CERVANTES-OSORNIO WALDO OJEDA BUSTAMANTE IRINEO LORENZO LOPEZ CRUZ (2008, [Artículo])

La evapotranspiración de referencia (ETo) es una variable climática esencial para el cálculo de los requerimientos hídricos de los cultivos. Su previsión a corto plazo es importante para programar la distribución de volúmenes de agua en las zonas de riego. En este trabajo se presenta la aplicación de un modelo de Red Neuronal Artificial (RNA) tipo feedforward backpropagation para predecir la ETo a partir de datos diarios de temperatura del aire, radiación solar, humedad relativa y velocidad del viento. La arquitectura adoptada del modelo de RNA contiene cuatro neuronas en la capa intermedia, una neurona en la capa de salida y funciones de activación tangente hiperbólica en ambas capas. Este modelo fue aplicado a un conjunto de datos climáticos con cinco años de observaciones de la red agroclimática “Valle del Fuerte” del distrito de riego 075, localizada en el norte de Sinaloa, México. El algoritmo de entrenamiento supervisado de Levenberg-Marquardt permitió obtener un buen desempeño de la red en términos del error cuadrático medio y del coeficiente de determinación R2 para estimar la ETo en los diferentes escenarios considerados. Las predicciones de las RNA fueron comparadas con las predicciones de modelos de regresión lineal múltiple y lineal por partes; los resultados muestran que ambos modelos presentan niveles de ajuste muy similares a los datos experimentales.

Evapotranspiración Requerimientos de riego Variables climáticas Distritos de riego Regresión no lineal Redes neuronales artificiales CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA