Author: Jaime Campos

Deterministic Brownian-like Motion: Electronic Approach

JOSE LUIS ECHENAUSIA MONROY Eric Campos Cantón Rider Jaimes Reátegui JUAN HUGO GARCIA LOPEZ GUILLERMO HUERTA CUELLAR (2022)

"Brownian motion is a dynamic behavior with random changes over time (stochastic) that occurs in many vital functions related to fluid environments, stock behavior, or even renewable energy generation. In this paper, we present a circuit implementation that reproduces Brownian motion based on a fully deterministic set of differential equations. The dynamics of the electronic circuit are characterized using four well-known metrics of Brownian motion, namely: (i) Detrended Fluctuation Analysis (DFA), (ii) power law in the power spectrum, (iii) normal probability distribution, and (iv) Mean Square Displacement (MSD); where traditional Brownian motion exhibits linear time growth of the MSD, a Gaussian distribution, a −2 power law of the frequency spectrum, and DFA values close to 1.5. The obtained results show that for a certain combination of values in the deterministic model, the dynamics in the electronic circuit are consistent with the expectations for a stochastic Brownian behavior. The presented electronic circuit improves the study of Brownian behavior by eliminating the stochastic component, allowing reproducibility of the results through fully deterministic equations, and enabling the generation of physical signals (analog electronic signals) with Brownian-like properties with potential applications in fields such as medicine, economics, genetics, and communications, to name a few."

Article

Brownian motion Deterministic Brownian motion DFA analysis Statistical analysis Electronic circuit Electronic implementation CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA FÍSICA ELECTRÓNICA ELECTRÓNICA

miRNAs contained in extracellular vesicles cargo contribute to the progression of idiopathic pulmonary fibrosis: an in vitro aproach

JOVITO CESAR SANTOS ALVAREZ JUAN MANUEL VELAZQUEZ ENRIQUEZ ROSENDO GARCÍA CARRILLO CESAR RODRIGUEZ BEAS ALMA AURORA RAMIREZ HERNANDEZ EDILBURGA REYES JIMENEZ KARINA GONZÁLEZ GARCÍA ARMANDO LOPEZ MARTINEZ LAURA PEREZ CAMPOS MAYORAL SERGIO ROBERTO AGUILAR RUIZ MARIA DE LOS ANGELES ROMERO TLALOLINI HONORIO TORRES AGUILAR LUIS ALBERTO CASTRO SANCHEZ JAIME ARELLANES ROBLEDO VERONICA ROCIO VASQUEZ GARZON RAFAEL BALTIERREZ HOYOS (2022)

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease. Lesions in the lung epithelium cause alterations in the microenvironment that promote fibroblast accumulation. Extracellular vesicles (EVs) transport proteins, lipids, and nucleic acids, such as microRNAs (miRNAs). The aim of this study was to characterize the differentially expressed miRNAs in the cargo of EVs obtained from the LL97 and LL29 fibroblast cell lines isolated from IPF lungs versus those derived from the CCD19 fibroblast cell line isolated from a healthy donors. We characterized EVs by ultracentrifugation, Western blotting, and dynamic light scattering. We identified miRNAs by small RNA-seq, a total of 1144 miRNAs, of which

1027 were known miRNAs; interestingly, 117 miRNAs were novel. Differential expression analysis showed that 77 miRNAs were upregulated and 68 were downregulated. In addition, pathway enrichment analyses from the Gene Ontology and Kyoto Encyclopedia of Genomes identified several miRNA target genes in the categories, cell proliferation, regulation of apoptosis, pathways in cancer, and proteoglycans in cancer. Our data reveal that miRNAs contained in EVs cargo could be helpful as biomarkers for fibrogenesis, diagnosis, and therapeutic intervention of IPF.

Article

MEDICINA Y CIENCIAS DE LA SALUD Idiopathic pulmonary fibrosis Extracellular vesicles Fibroblasts Small-RNA seq