Filtros
Filtrar por:
Tipo de publicación
- Artículo (34)
- Capítulo de libro (2)
Autores
- Jose Crossa (10)
- Osval Antonio Montesinos-Lopez (7)
- Alison Bentley (5)
- XUECAI ZHANG (4)
- Leonardo Abdiel Crespo Herrera (3)
Años de Publicación
Editores
- Bernd Schierwater, University of Veterinary Medicine Hanover, Germany (1)
- Craig R. McClain, Monterey Bay Aquarium Research Institute, United States of America (1)
- Gabriel Moreno-Hagelsieb, Wilfrid Laurier University, Canada (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (33)
- Repositorio Institucional CICESE (3)
Tipos de Acceso
- oa:openAccess (36)
Idiomas
- eng (36)
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (33)
- MARKER-ASSISTED SELECTION (14)
- Genomic Prediction (13)
- WHEAT (12)
- Genomic Selection (10)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Multi-environment genomic prediction of plant traits using deep learners with dense architecture
Osval Antonio Montesinos-Lopez Jose Crossa (2018, [Artículo])
Shared Data Resources Deep Learning Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ACCURACY GENOMICS NEURAL NETWORKS FORECASTING DATA MARKER-ASSISTED SELECTION
Junjie Fu XUECAI ZHANG (2023, [Artículo])
Genomic Prediction Prediction Model Genetic Effects Hybrid Performance CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE GENETICS HYBRIDS PERFORMANCE ASSESSMENT
Results from rapid-cycle recurrent genomic selection in spring bread wheat
Susanne Dreisigacker Paulino Pérez-Rodríguez Leonardo Abdiel Crespo Herrera Alison Bentley Jose Crossa (2023, [Artículo])
Genomic-Assisted Breeding Molecular Markers Pedigree Information Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOMICS GENETIC MARKERS WHEAT BREEDING PROGRAMMES
Efficacy of plant breeding using genomic information
Osval Antonio Montesinos-Lopez Alison Bentley Carolina Saint Pierre Leonardo Abdiel Crespo Herrera Morten Lillemo Jose Crossa (2023, [Artículo])
Genomic Selection Genomic Prediction Genomic Best Linear Unbiased Predictor CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA PLANT BREEDING GENOMICS MARKER-ASSISTED SELECTION ENVIRONMENT
Abiotic stress tolerance: Genetics, genomics, and breeding
Yunbi Xu Rajeev Varshney (2023, [Artículo])
Wheat Ancestors Modern Varieties Agronomic Performance CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ABIOTIC STRESS GENETICS GENOMICS BREEDING GERMPLASM DROUGHT STRESS
Vanika Garg Rutwik Barmukh Manish Roorkiwal Chris Ojiewo Abhishek Bohra MAHENDAR THUDI Vikas Kumar Singh Himabindu Kudapa Reyaz Mir Chellapilla Bharadwaj Xin Liu Manish Pandey (2024, [Artículo])
Agricultural Biotechnology Crop Genomics Genome Sequencing CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOTECHNOLOGY CROPS GENOMICS PLANT BREEDING AGRICULTURE GENETIC IMPROVEMENT
Statistical machine-learning methods for genomic prediction using the SKM library
Osval Antonio Montesinos-Lopez Brandon Alejandro Mosqueda González Jose Crossa (2023, [Artículo])
Sparse Kernel Methods R package Statistical Machine Learning Genomic Selection CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MARKER-ASSISTED SELECTION MACHINE LEARNING GENOMICS METHODS
Chapter 9. Genome-informed discovery of genes and framework of functional genes in wheat
awais rasheed Rudi Appels (2024, [Capítulo de libro])
Wheat Genomics KASP Markers Gene Discovery Functional Markers Gene Networks CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT GENOMICS SINGLE NUCLEOTIDE POLYMORPHISMS FUNCTIONAL GENOMICS
Smallholder maize yield estimation using satellite data and machine learning in Ethiopia
Zhe Guo Jordan Chamberlin Liangzhi You (2023, [Artículo])
The lack of timely, high-resolution data on agricultural production is a major challenge in developing countries where such information can guide the allocation of scarce resources for food security, agricultural investment, and other objectives. While much research has suggested that remote sensing can potentially help address these gaps, few studies have indicated the immediate potential for large-scale estimations over both time and space. In this study we described a machine learning approach to estimate smallholder maize yield in Ethiopia, using well-measured and broadly distributed ground truth data and freely available spatiotemporal covariates from remote sensing. A neural networks model outperformed other algorithms in our study. Importantly, our work indicates that a model developed and calibrated on a previous year's data could be used to reasonably estimate maize yield in the subsequent year. Our study suggests the feasibility of developing national programs for the routine generation of broad-scale and high-resolution estimates of smallholder maize yield, including seasonal forecasts, on the basis of machine learning algorithms, well-measured ground control data, and currently existing time series satellite data.
Sentinel-2 Smallholder Agriculture Yield Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA INTENSIFICATION SMALLHOLDERS AGRICULTURE YIELD FORECASTING
Xu Wang Sandesh Kumar Shrestha Philomin Juliana Suchismita Mondal Francisco Pinto Govindan Velu Leonardo Abdiel Crespo Herrera JULIO HUERTA_ESPINO Ravi Singh Jesse Poland (2023, [Artículo])
New Crop Varieties Plant Breeding Programs Yield Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA LEARNING GRAIN YIELDS WHEAT BREEDING FOOD SECURITY