Filtrar por:
Tipo de publicación
- Artículo (33)
- Objeto de congreso (9)
- Capítulo de libro (2)
- Tesis de maestría (2)
- Documento de trabajo (2)
Autores
- sridhar bhavani (5)
- David Hodson (3)
- Isaiah Nyagumbo (3)
- Susanne Dreisigacker (3)
- Alison Bentley (2)
Años de Publicación
Editores
- CICESE (2)
- & (1)
- Atmospheric Research, New Zealand (1)
- Centro de Investigaciones Biológicas del Noroeste, s.c. (1)
- Heather M. Patterson, Department of Agriculture and Water Resources, Australia (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (38)
- Repositorio Institucional CICESE (4)
- Repositorio Institucional CIBNOR (2)
- CIATEQ Digital (1)
- Repositorio IPICYT (1)
Tipos de Acceso
- oa:openAccess (49)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (40)
- TECHNOLOGY (10)
- GENETIC DIVERSITY (AS RESOURCE) (8)
- DISEASE RESISTANCE (6)
- MAIZE (6)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Status of implementation new tools and technologies in the GMP- EA-PP1 Africa breeding pipeline
Yoseph Beyene Andrew Chavangi Manje Gowda Suresh L.M. Vijay Chaikam Anani Bruce Berhanu Tadesse Ertiro Walter Chivasa Jose Crossa Juan Burgueño Fidelis Owino (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BREEDING MAIZE PHENOTYPING NEW TECHNOLOGY
User manual: How to use Agvisely to generate climate service advisories for livestock in Bangladesh
T.S Amjath-Babu Timothy Joseph Krupnik (2023, [Libro])
The Agvisely digital service for livestock integrates location-specific meteorological forecasts generated by the Bangladesh Meteorological Department (BMD) with species specific biological thresholds for weather variables (Temperature, rainfall, and temperature-humidity index (THI). When a biological threshold is to be breached in next five days' forecast, the system automatically generates location-specific management advice for livestock farmers. Advisories are based on a decision tree developed by the Bangladesh Livestock Research Institute (BLRI) and CIMMYT. Agvisely is a smart phone app and web-based service developed by the International Maize and Wheat Improvement Center (CIMMYT) CIMMYT with the support of USAID, securing the Food Systems of Asian Mega- Deltas (AMD) for Climate and Livelihood Resilience and the Transforming Agrifood Systems in South Asia (TAFSSA) initiatives in collaboration with Bangladesh Dept. of Agricultural Extension (DAE) and Bangladesh Meteorological Department (BMD).
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE SERVICES LIVESTOCK DIGITAL TECHNOLOGY
Andrea Gardeazabal (2023, [Documento de trabajo])
This report describes the process carried out a pilot project to evaluate a scalable disruptive approach to integrating data for agronomy research that also incentivizes sustainable production and enables traceability using open data sharing protocol with self-sovereign identity (SSI).
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DIGITAL TECHNOLOGY DATA AGRICULTURAL RESEARCH
Anup Das virender kumar Peter Craufurd Andrew Mcdonald Sonam Sherpa (2023, [Artículo])
Introduction: Conservation agriculture (CA) is gaining attention in the South Asia as an environmentally benign and sustainable food production system. The knowledge of the soil bacterial community composition along with other soil properties is essential for evaluating the CA-based management practices for achieving the soil environment sustainability and climate resilience in the rice-wheat-greengram system. The long-term effects of CA-based tillage-cum-crop establishment (TCE) methods on earthworm population, soil parameters as well as microbial diversity have not been well studied. Methods: Seven treatments (or scenarios) were laid down with the various tillage (wet, dry, or zero-tillage), establishment method (direct-or drill-seeding or transplantation) and residue management practices (mixed with the soil or kept on the soil surface). The soil samples were collected after 7 years of experimentation and analyzed for the soil quality and bacterial diversity to examine the effect of tillage-cum-crop establishment methods. Results and Discussion: Earthworm population (3.6 times), soil organic carbon (11.94%), macro (NPK) (14.50–23.57%) and micronutrients (Mn, and Cu) (13.25 and 29.57%) contents were appreciably higher under CA-based TCE methods than tillage-intensive farming practices. Significantly higher number of OTUs (1,192 ± 50) and Chao1 (1415.65 ± 14.34) values were observed in partial CA-based production system (p ≤ 0.05). Forty-two (42) bacterial phyla were identified across the scenarios, and Proteobacteria, Actinobacteria, and Firmicutes were the most dominant in all the scenarios. The CA-based scenarios harbor a high abundance of Proteobacteria (2–13%), whereas the conventional tillage-based scenarios were dominated by the bacterial phyla Acidobacteria and Chloroflexi and found statistically differed among the scenarios (p ≤ 0.05). Composition of the major phyla, i.e., Proteobacteria, Actinobacteria, and Firmicutes were associated differently with either CA or farmers-based tillage management practices. Overall, the present study indicates the importance of CA-based tillage-cum-crop establishment methods in shaping the bacterial diversity, earthworms population, soil organic carbon, and plant nutrient availability, which are crucial for sustainable agricultural production and resilience in agro-ecosystem.
Metagenomics Bacterial Diversity Rice-Wheat-Greengram CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CONSERVATION AGRICULTURE DNA SEQUENCES EARTHWORMS METAGENOMICS SOIL QUALITY AGROECOSYSTEMS
madhu choudhary ML JAT Parbodh Chander Sharma (2022, [Artículo])
Fungal communities in agricultural soils are assumed to be affected by climate, weather, and anthropogenic activities, and magnitude of their effect depends on the agricultural activities. Therefore, a study was conducted to investigate the impact of the portfolio of management practices on fungal communities and soil physical–chemical properties. The study comprised different climate-smart agriculture (CSA)-based management scenarios (Sc) established on the principles of conservation agriculture (CA), namely, ScI is conventional tillage-based rice–wheat rotation, ScII is partial CA-based rice–wheat–mungbean, ScIII is partial CSA-based rice–wheat–mungbean, ScIV is partial CSA-based maize–wheat–mungbean, and ScV and ScVI are CSA-based scenarios and similar to ScIII and ScIV, respectively, except for fertigation method. All the scenarios were flood irrigated except the ScV and ScVI where water and nitrogen were given through subsurface drip irrigation. Soils of these scenarios were collected from 0 to 15 cm depth and analyzed by Illumina paired-end sequencing of Internal Transcribed Spacer regions (ITS1 and ITS2) for the study of fungal community composition. Analysis of 5 million processed sequences showed a higher Shannon diversity index of 1.47 times and a Simpson index of 1.12 times in maize-based CSA scenarios (ScIV and ScVI) compared with rice-based CSA scenarios (ScIII and ScV). Seven phyla were present in all the scenarios, where Ascomycota was the most abundant phyla and it was followed by Basidiomycota and Zygomycota. Ascomycota was found more abundant in rice-based CSA scenarios as compared to maize-based CSA scenarios. Soil organic carbon and nitrogen were found to be 1.62 and 1.25 times higher in CSA scenarios compared with other scenarios. Bulk density was found highest in farmers' practice (Sc1); however, mean weight diameter and water-stable aggregates were found lowest in ScI. Soil physical, chemical, and biological properties were found better under CSA-based practices, which also increased the wheat grain yield by 12.5% and system yield by 18.8%. These results indicate that bundling/layering of smart agricultural practices over farmers' practices has tremendous effects on soil properties, and hence play an important role in sustaining soil quality/health.
Agriculture Management Fungal Community Diversity Indices Climate-Smart Agricultural Practices CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE TILLAGE CLIMATE-SMART AGRICULTURE SOIL ORGANIC CARBON
Development of a next generation SNP genotyping array for wheat
Simon Griffiths Susanne Dreisigacker Alison Bentley Gina Brown-Guedira (2023, [Artículo])
Axiom Array High Throughput Genotyping Hexaploid Wheat Copy Number Variation Analysis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SINGLE NUCLEOTIDE POLYMORPHISMS WHEAT GENOTYPING GENETIC DIVERSITY (AS RESOURCE)
Jode Edwards Sarah Hearne (2023, [Artículo])
Homozygous Lines CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENETIC DIVERSITY (AS RESOURCE) GENETIC RESOURCES ZEA MAYS GENOTYPING DOUBLED HAPLOIDS SINGLE NUCLEOTIDE POLYMORPHISMS
Susanne Dreisigacker Marta Lopes Miguel Sanchez-Garcia (2023, [Artículo])
Winter Wheat Panel Precision Phenology Effective Markers CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENETIC DIVERSITY (AS RESOURCE) GENOME-WIDE ASSOCIATION STUDIES PHENOLOGY PHOTOPERIODICITY POPULATION STRUCTURE VERNALIZATION WINTER WHEAT
Morphological characterization of native maize populations of the ratón race from Coahuila, Mexico
Froylan Rincon Cesar Petroli (2023, [Artículo])
Repeatability Index Representative Subset of Diversity Maize Raton Race CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENETIC DIVERSITY (AS RESOURCE) ZEA MAYS MORPHOLOGY PHENOTYPING VARIETIES
Alison Bentley Charles Chen Nunzio D'Agostino (2022, [Artículo])
Allele Mining High-Throughput Phenotyping Genomic Estimated Breeding Value CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP IMPROVEMENT DNA CHROMOSOME MAPPING GENETIC LINKAGE GENOMES GENOTYPING GERMINATION HEAT STRESS QUALITY CONTROL SINGLE NUCLEOTIDE POLYMORPHISM TRITICUM AESTIVUM GENETIC DIVERSITY (AS RESOURCE) HIGH-THROUGHPUT SEQUENCING