Búsqueda avanzada


Área de conocimiento




254 resultados, página 3 de 10

Climate change and the northern elephant seal (Mirounga angustirostris) population in Baja California, Mexico

M. Concepción García-Aguilar (2018, [Artículo])

The Earth0s climate is warming, especially in the mid- and high latitudes of the Northern Hemisphere. The northern elephant seal (Mirounga angustirostris) breeds and haul-outs on islands and the mainland of Baja California, Mexico, and California, U.S.A. At the beginning of the 21st century, numbers of elephant seals in California are increasing, but the status of Baja California populations is unknown, and some data suggest they may be decreasing. We hypothesize that the elephant seal population of Baja California is experiencing a decline because the animals are not migrating as far south due to warming sea and air temperatures. Here we assessed population trends of the Baja California population, and climate change in the region. The numbers of northern elephant seals in Baja California colonies have been decreasing since the 1990s, and both the surface waters off Baja California and the local air temperatures have warmed during the last three decades. We propose that declining population sizes may be attributable to decreased migration towards the southern portions of the range in response to the observed temperature increases. Further research is needed to confirm our hypothesis; however, if true, it would imply that elephant seal colonies of Baja California and California are not demographically isolated which would pose challenges to environmental and management policies between Mexico and the United States. © 2018 García-Aguilar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

air temperature, article, Baja California, climate change, human, Mirounga angustirostris, nonhuman, population size, warming, animal, ecosystem, environmental protection, Mexico, Phocidae, population density, population migration, temperature, Anima CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA

Análisis isotópico en plumas del Charrán mínimo (Sternula antillarum) para inferir su ecología trófica

Isotope analysis in feathers of the Least Tern (Sternula antillarum) to infer its trophic ecology

Andehui Danay Morales Flores (2024, [Tesis de maestría])

El análisis isotópico de plumas primarias utilizando las razones isotópicas δ13C y δ15N permitió estimar la amplitud y superposición del nicho trófico de los conjuntos de las colonias reproductivas de adultos y volantones del charrán mínimo. Se infirió la amplitud del nicho por medio del área de la elipse estándar estimada por métodos Bayesianos (SEAB), se encontró que existen diferencias entre el nicho trófico de adultos y volantones, pues los adultos tienen valores de la media SEAB de 16.3‰2 hasta 28.4‰2 y los volantones de 44.8‰2 hasta 75.5‰2, esto podría ser debido a diferencias en cuanto a las presas seleccionadas y la ubicación geográfica de los adultos durante la muda de las primarias. Por otro lado, la superposición del nicho indicó la similitud entre los adultos de diferentes colonias, por lo cual, se consideró que los adultos de algunas colonias podrían compartir un sitio de invernada o bien la temporalidad en la muda de las primarias. Además, se cumplió con el objetivo de caracterizar la variabilidad de las firmas isotópicas de carbono y nitrógeno durante el crecimiento secuencial de las plumas primarias por medio de los modelos aditivos generalizados y se observó la variabilidad entre las primarias utilizando las anomalías respecto a la media local de cada colonia, lo cual permitió diferenciar estrategias de alimentación específicas para ciertos conjuntos y la variabilidad en la dieta. La búsqueda bibliográfica de los sitios potenciales de migración en invierno más los mapas de gradientes isotópicos de δ13C permitió determinar que el Océano Pacífico Oriental Tropical es la región geográfica relacionada con la distribución δ13C en plumas primarias del charrán mínimo y es el sitio más probable de invernada.

The isotopic analysis of primary feathers using the isotopic ratios of δ13C and δ15N allowed the estimation of the breadth and overlap of the trophic niche of adult and fledgling least terns. Niche breadth was inferred through the standard ellipse area (SEAB) estimated by Bayesian methods. We found differences between the trophic niche of adults and fledglings, as adults presented mean SEAB values from 16.3‰2 to 28.4‰2 and fledglings from 44.8‰2 to 75.5‰2. This could be due to differences in the prey selected and the geographical location of the adults during the molt of the primaries. The overlap of these values among adults indicates similarity in prey selection and location between the adults of different colonies. Therefore, it was considered that the adults of some colonies could share a wintering site during the period of molt of the primary feathers. We characterized the variability of carbon and nitrogen isotopic signatures during the sequential growth of primary feathers through generalized additive models and the variability between primaries using the anomalies of these signatures and the local mean for each colony. This allowed us to differentiate specific feeding strategies of individual least terns and the variability in their diet. The bibliographic search for potential migration and wintering sites found published maps of δ13C isotopic gradients in the Tropical Eastern Pacific Ocean that correspond to the δ13C distribution in primary feathers of the least tern, indicating a potential wintering area for this species.

isótopos, carbono, nitrógeno, ave marina, ecología trófica isotopes, seabird, nitrogen, carbon, trophic ecology BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL

Rapid effects of marine reserves via larval dispersal

Richard Cudney Bueno (2009, [Artículo])

Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs), with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest. © 2009 Cudney-Bueno et al.

article, environmental monitoring, fishery, larva, marine environment, marine species, Mexico, mollusc, nonhuman, oceanography, prediction, animal, biology, environmental protection, food industry, geography, growth, development and aging, larva, met CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA

Trophic ecology of Mexican Pacific harbor seal colonies using carbon and nitrogen stable isotopes

MARICELA JUAREZ RODRIGUEZ (2020, [Artículo])

There is limited information that provides a comprehensive understanding of the trophic ecology of Mexican Pacific harbor seal (Phoca vitulina richardii) colonies. While scat analysis has been used to determine the diet of some colonies, the integrative characterization of its feeding habits on broader temporal and spatial scales remains limited. We examined potential feeding grounds, trophic niche width, and overlap, and inferred the degree of dietary specialization using stable carbon and nitrogen isotope ratios (δ13C and δ15N) in this subspecies. We analyzed δ13C and δ15N on fur samples from pups collected at five sites along the western coast of the Baja California Peninsula, Mexico. Fur of natal coat of Pacific harbor seal pups begins to grow during the seventh month in utero until the last stage of gestation. Therefore pup fur is a good proxy for the mother's feeding habits in winter (∼December to March), based on the timing of gestation for the subspecies in this region. Our results indicated that the δ13C and δ15N values differed significantly among sampling sites, with the highest mean δ15N value occurring at the southernmost site, reflecting a well-characterized north to south latitudinal 15N-enrichment in the food web. The tendency identified in δ13C values, in which the northern colonies showed the most enriched values, suggests nearshore and benthic-demersal feeding habits. A low variance in δ13C and δ15N values for each colony (<1‰) and relatively small standard ellipse areas suggest a specialized foraging behavior in adult female Pacific harbor seals in Mexican waters. © 2020 Juárez-Rodríguez et al.

carbon, delta carbon 13, delta nitrogen 15, isotope, nitrogen, unclassified drug, carbon, nitrogen, Article, correlational study, feeding behavior, latitude, Mexico, nonhuman, organism colony, Pinnipedia, population abundance, species richness, troph BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA ANIMAL (ZOOLOGÍA) BIOLOGÍA ANIMAL (ZOOLOGÍA)

Appraisal of complementarity of subsurface drip fertigation and conservation agriculture for physiological performance and water economy of maize

C.M. Parihar Hari Sankar Nayak Dipaka Ranjan Sena Renu Pandey Mahesh Gathala ML JAT (2023, [Artículo])

The Indo-Gangetic Plains (IGP) in north-west (NW) India are facing a severe decline in ground water due to prevalent rice-based cropping systems. To combat this issue, conservation agriculture (CA) with an alternative crop/s, such as maize, is being promoted. Recently, surface drip fertigation has also been evaluated as a viable option to address low-nutrient use efficiency and water scarcity problems for cereals. While the individual benefits of CA and sub-surface drip (SSD) irrigation on water economy are well-established, information regarding their combined effect in cereal-based systems is lacking. Therefore, we conducted a two-year field experiment in maize, under an ongoing CA-based maize-wheat system, to evaluate the complementarity of CA with SSD irrigation through two technological interventions–– CA+ (residue retained CA + SSD), PCA+ (partial CA without residue + SSD) – at different N rates (0, 120 and 150 kg N ha-1) in comparison to traditional furrow irrigated (FI) CA and conventional tillage (CT) at 120 kg N ha-1. Our results showed that CA+ had the highest grain yield (8.2 t ha-1), followed by PCA+ (8.1 t ha-1). The grain yield under CA+ at 150 kg N ha-1 was 27% and 30% higher than CA and CT, respectively. Even at the same N level (120 kg N ha-1), CA+ outperformed CA and CT by 16% and 18%, respectively. The physiological performance of maize also revealed that CA+ based plots with 120 kg N ha-1 had 12% and 3% higher photosynthesis rate at knee-high and silking, respectively compared to FI-CA and CT. Overall, compared to the FI-CA and CT, SSD-based CA+ and PCA+ saved 54% irrigation water and increased water productivity (WP) by more than twice. Similarly, a greater number of split N application through fertigation in PCA+ and CA+ increased agronomic nitrogen use efficiency (NUE) and recover efficiency by 8–19% and 14–25%, respectively. Net returns from PCA+ and CA+ at 150 kg N ha-1 were significantly higher by US$ 491 and 456, respectively than the FI-CA and CT treatments. Therefore, CA coupled with SSD provided tangible benefits in terms of yield, irrigation water saving, WP, NUE and profitability. Efforts should be directed towards increasing farmers’ awareness of the benefits of such promising technology for the cultivating food grains and commercial crops such as maize. Concurrently, government support and strict policies are required to enhance the system adaptability.

Net Returns Subsurface Drip Irrigation Subsurface Drip Fertigation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA EFFICIENCY GRAIN NITROGEN PHOTOSYNTHESIS PHYSIOLOGY WATER SUPPLY CONSERVATION AGRICULTURE CONVENTIONAL TILLAGE FERTIGATION GROUNDWATER NITROGEN-USE EFFICIENCY WATER PRODUCTIVITY

Phylogenetic relationships of Pseudo-nitzschia subpacifica (Bacillariophyceae) from the Mexican Pacific, and its production of domoic acid in culture

Sonia Quijano (2020, [Artículo])

Pseudo-nitzschia is a cosmopolitan genus, some species of which can produce domoic acid (DA), a neurotoxin responsible for the Amnesic Shellfish Poisoning (ASP). In this study, we identified P. subpacifica for the first time in Todos Santos Bay and Manzanillo Bay, in the Mexican Pacific using SEM and molecular methods. Isolates from Todos Santos Bay were cultivated under conditions of phosphate sufficiency and deficiency at 16°C and 22°C to evaluate the production of DA. This toxin was detected in the particulate (DAp) and dissolved (DAd) fractions of the cultures during the exponential and stationary phases of growth of the cultures. The highest DA concentration was detected during the exponential phase grown in cells maintained in P-deficient medium at 16°C (1.14 ± 0.08 ng mL-1 DAd and 4.71 ± 1.11 × 10−5 ng cell-1 of DAp). In P-sufficient cultures DA was higher in cells maintained at 16°C (0.25 ± 0.05 ng mL-1 DAd and 9.41 ± 1.23 × 10−7 ng cell-1 of DAp) than in cells cultured at 22°C. Therefore, we confirm that P. subpacifica can produce DA, especially under P-limited conditions that could be associated with extraordinary oceanographic events such as the 2013–2016 "Blob" in the northeastern Pacific Ocean. This event altered local oceanographic conditions and possibly generated the presence of potential harmful species in areas with economic importance on the Mexican Pacific coast. © 2020 Quijano-Scheggia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

domoic acid, domoic acid, kainic acid, Article, cell growth, controlled study, diatom, Mexico, morphology, nonhuman, Pacific Ocean, phylogeny, plant cell, plant growth, Pseudo nitzschia, toxin analysis, cell culture technique, classification, diatom, CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA