Búsqueda avanzada


Área de conocimiento




61 resultados, página 1 de 7

Efectos del cambio climático en los recursos hídricos de México : volumen III : atlas de vulnerabilidad hídrica en México ante el cambio climático

Polioptro Martinez-Austria CARLOS PATIÑO GOMEZ (2010, [Libro])

Tabla de contenido: 1. Índice de vulnerabilidad social -- 2. Escenarios climáticos en México proyectados para el siglo XXI -- 3. Impacto del cambio climático en la temporada -- 4. Vulnerabilidad hídrica global: aguas superficiales -- 5. Vulnerabilidad de la agricultura de riego en México ante el cambio climático -- 6. Calidad del agua.

Este libro, que se suma al acervo generado y acumulado en material de cambio climático en neustro país, más que mostrar una visión catastrófista, es una invitación a la reflexión sobre la necesidad de tomar medidas que permitan reducir la vulnerabilidad de nuestro país y afrontar, de la manera más adecuada, las amenazas relacionadas con el cambio climático.

1. Índice de vulnerabilidad social -- 2. Escenarios climáticos en México proyectados para el siglo XXI -- 3. Impacto del cambio climático en la temporada -- 4. Vulnerabilidad hídrica global: aguas superficiales -- 5. Vulnerabilidad de la agricultura de riego en México ante el cambio climático -- 6. Calidad del agua.

Cambio climático Efectos del clima Recursos hídricos Vulnerabilidad hídrica Atlas México CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA

Using microsatellite data to estimate the persistence of field-level yield gaps and their drivers in smallholder systems

Balwinder-Singh Meha Jain (2023, [Artículo])

One way to meet growing food demand is to increase yields in regions that have large yield gaps, including smallholder systems. To do this, it is important to quantify yield gaps, their persistence, and their drivers at large spatio-temporal scales. Here we use microsatellite data to map field-level yields from 2014 to 2018 in Bihar, India and use these data to assess the magnitude, persistence, and drivers of yield gaps at the landscape scale. We find that overall yield gaps are large (33% of mean yields), but only 17% of yields are persistent across time. We find that sowing date, plot area, and weather are the factors that most explain variation in yield gaps across our study region, with earlier sowing associated with significantly higher yield values. Simulations suggest that if all farmers were able to adopt ideal management strategies, including earlier sowing and more irrigation use, yield gaps could be closed by up to 42%. These results highlight the ability of micro-satellite data to understand yield gaps and their drivers, and can be used to help identify ways to increase production in smallholder systems across the globe.

Yield Drivers Yield Mapping CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MICROSATELLITES YIELD GAP SMALLHOLDERS FOOD PRODUCTION YIELD INCREASES

Agroecology can promote climate change adaptation outcomes without compromising yield in smallholder systems

Sieglinde Snapp Yodit Kebede Eva Wollenberg (2023, [Artículo])

A critical question is whether agroecology can promote climate change mitigation and adaptation outcomes without compromising food security. We assessed the outcomes of smallholder agricultural systems and practices in low- and middle-income countries (LMICs) against 35 mitigation, adaptation, and yield indicators by reviewing 50 articles with 77 cases of agroecological treatments relative to a baseline of conventional practices. Crop yields were higher for 63% of cases reporting yields. Crop diversity, income diversity, net income, reduced income variability, nutrient regulation, and reduced pest infestation, indicators of adaptative capacity, were associated with 70% or more of cases. Limited information on climate change mitigation, such as greenhouse gas emissions and carbon sequestration impacts, was available. Overall, the evidence indicates that use of organic nutrient sources, diversifying systems with legumes and integrated pest management lead to climate change adaptation in multiple contexts. Landscape mosaics, biological control (e.g., enhancement of beneficial organisms) and field sanitation measures do not yet have sufficient evidence based on this review. Widespread adoption of agroecological practices and system transformations shows promise to contribute to climate change services and food security in LMICs. Gaps in adaptation and mitigation strategies and areas for policy and research interventions are finally discussed.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE CROPS FOOD SUPPLY GAS EMISSIONS GREENHOUSE GASES FARMING SYSTEMS AGROECOLOGY FOOD SECURITY LESS FAVOURED AREAS SMALLHOLDERS YIELDS NUTRIENTS BIOLOGICAL PEST CONTROL CARBON SEQUESTRATION LEGUMES

Closing the yield gap of soybean (Glycine max (L.) Merril) in Southern Africa: a case of Malawi, Zambia, and Mozambique

Siyabusa Mkuhlani Isaiah Nyagumbo (2023, [Artículo])

Introduction: Smallholder farmers in Sub-Saharan Africa (SSA) are increasingly producing soybean for food, feed, cash, and soil fertility improvement. Yet, the difference between the smallholder farmers’ yield and either the attainable in research fields or the potential from crop models is wide. Reasons for the yield gap include low to nonapplication of appropriate fertilizers and inoculants, late planting, low plant populations, recycling seeds, etc. Methods: Here, we reviewed the literature on the yield gap and the technologies for narrowing it and modelled yields through the right sowing dates and suitable high-yielding varieties in APSIM. Results and Discussion: Results highlighted that between 2010 and 2020 in SSA, soybean production increased; however, it was through an expansion in the cropped area rather than a yield increase per hectare. Also, the actual smallholder farmers’ yield was 3.8, 2.2, and 2.3 times lower than the attainable yield in Malawi, Zambia, and Mozambique, respectively. Through inoculants, soybean yield increased by 23.8%. Coupling this with either 40 kg ha−1 of P or 60 kg ha−1 of K boosted the yields by 89.1% and 26.0%, respectively. Overall, application of 21–30 kg ha-1 of P to soybean in SSA could increase yields by about 48.2%. Furthermore, sowing at the right time increased soybean yield by 300%. Although these technologies enhance soybean yields, they are not fully embraced by smallholder farmers. Hence, refining and bundling them in a digital advisory tool will enhance the availability of the correct information to smallholder farmers at the right time and improve soybean yields per unit area.

Decision Support Tools Digital Tools Site-Specific Recommendations CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DECISION SUPPORT SYSTEMS LEGUMES YIELDS SOYBEANS