Búsqueda avanzada


Área de conocimiento




6 resultados, página 1 de 1

Simulación y validación de la reparación de ductos en servicio por la deposición directa de soldadura

LUIS DANTE MELENDEZ MORALES (2023, [Tesis de doctorado])

El transporte de hidrocarburos por ductos enterrados es la forma más segura, confiable y económica para su suministro, estos pueden extenderse grandes longitudes territoriales e inclusive atravesar países con tal de satisfacer la demanda energética. No obstante, los ductos pueden sufrir daños provocados por el ambiente, su operación o bien provocados por terceros, siendo necesario que sean intervenidos reemplazando las secciones dañadas. Las regulaciones nacionales y tratados internacionales desalientan la liberación de grandes cantidades de gas natural a la atmósfera, por demás de que un paro de suministro conlleva a desabasto energético, multas y a costosas operaciones asociadas con la rehabilitación del ducto, forzando a soldar envolventes y accesorios sin detener la operación de los ductos, esto se conoce como “soldadura en servicio”. La soldadura en servicio es un proceso tecnológico, por el cual se puede efectuar la interconexión y la reparación de ductos mientras están en operación, previo a realizar estas actividades, se requiere que dos riesgos sean evaluados: agrietamiento por hidrógeno y quemada pasante. Las simulaciones actuales y validaciones evalúan estos riesgos de forma independiente, pero debido a su interdependencia estos riesgos deben evaluarse en conjunto. Un método de reparación que no es normalmente empleado, pero con un alto potencial debido a su simplicidad y versatilidad, es la deposición directa de soldadura. En la presente investigación, se realizó una simulación numérica fluido-termo-mecánica acoplada con validación experimental, de la reparación de un tubo con flujo presurizado conteniendo un defecto interno por la deposición directa de soldadura. Por medio de la cual, es posible predecir el comportamiento estructural del ducto mientras se realiza la reparación.

La simulación numérica se efectuó con el apoyo del software ANSYS versión académica 22R2, siendo esta una herramienta de última generación capaz de contribuir en la predicción de mecanismos complejos como lo es la soldadura en servicio, incrementando con ello la seguridad y confiabilidad de estas operaciones. Cabe hacer mención, que la regulación nacional prohíbe la reparación de defectos internos por la deposición directa de soldadura, esto se debe principalmente a la falta de investigaciones validadas que respalden su viabilidad. Los resultados demostraron la efectividad de emplear este método de reparación para restaurar la resistencia mecánica de los ductos. Las inspecciones por pruebas no destructivas superficiales, subsuperficiales y volumétricas, evidenciaron que no ocurrió agrietamiento inmediatamente al finalizar la reparación y retardada (posterior a por lo menos 12 horas después de haberse finalizada la reparación, tiempo suficiente para permitir la difusión de hidrógeno atómico a hidrógeno molecular). Las curvas de tendencia de temperatura mostraron buena aproximación teniéndose una diferencia máxima de 5.09% entre los resultados numéricos y experimental. Los resultados numéricos y experimentales de la deformación perimetral a lo largo de la longitud de la tubería mostraron un comportamiento similar con una diferencia significativa del 17.7% entre los valores numéricos atribuidos a la falta de información de entrada para las propiedades de la soldadura. El análisis estructural efectuado en este estudio emplea la estimación del riesgo de quemada pasante bajo presión interna, determinado por la ocurrencia de abultamiento radial localizado. Los resultados numéricos indican que no ocurre deformación plástica relevante. Se hace una fuerte recomendación para que las evaluaciones de análisis térmico empleen la morfología actual del defecto y no solo consideren el espesor remanente del tubo. De acuerdo con la revisión bibliográfica realizada y recientemente publicada, este tipo de simulación numérica acoplada con validación experimental de la reparación de ductos en servicio por deposición directa de soldadura para la reparación de defectos internos contemplando la prevención de quemada pasante y agrietamiento por hidrógeno no ha sido realizada con anterioridad.

Hydrocarbon transportation by buried pipelines is the safest, most reliable, and economical way for its supply; these can extend long territorial distances and even cross countries with the purpose of satisfying the energy demand. However, the pipelines can suffer damages caused by their environment, their operation, or provoked by third parties, making necessary interventions to replace the damaged sections. National regulations and international agreements discourage the release of large quantities of natural gas into the atmosphere; moreover, a stop in its supply entails an energetic shortage, fines, and expensive operations associated with the pipeline rehabilitation, forcing to weld sleeves and fittings without stop the pipeline operation, this is known as “In-Service Welding”. In-Service welding is a technological process for which interconnection and repair of pipelines can be made while they are in operation; before making it, two main risks need to be assessed: hydrogen cracking and burn-through. Current simulations and validations assess these risks independently, but due to their interdependence, these risks need to be assessed in conjunction. A repair method not normally used but with high potential due to its simplicity and versatility is the direct deposition of the weld. In the present research, a fluid-thermo-mechanical coupled numerical simulation with experimental validation was done of a repair on a pipe with pressurized flow having an internal defect by direct deposition of the weld. It is possible predict the structural behavior of a pipeline while the reparation is performed.

The numerical simulation was done with the support of ANSYS software academic version 22R2, the latest generation tool able to contribute to the prediction of complex mechanisms, as is in-service welding, increasing the security and confidence of these operations. It is worth mentioning that national regulation forbids the reparation of internal defects for direct deposition of the weld; the main reason is the lack of validated investigations supporting its viability. The results demonstrated the effectiveness of using this repair method to restore the mechanical strength of pipelines. Surface, sub-surface, and volumetric non-destructive inspections evidenced no cracking immediately to finish the repair and delayed (after at least 12 hours of having finished the repair, time enough to allow the hydrogen diffusion from atomic hydrogen to molecular hydrogen). Temperature tendency curves showed good approximations, having a maximum difference of 5.09 % between numerical and experimental. Perimeter deformation along the pipe length between numerical and experimental results displayed a similar behavior with a significant difference of 17.7% against numerical values attributed to the lack of input data for weld properties. The structural analysis performed in this study used the approach of the risk of burn-through under internal pressure determined by the occurrence of localized radial bulging. Numerical results indicated no relevant plastic strain occurs. It is strongly recommended that thermal analysis assessments using the actual defect morphology be performed, not only considering the remaining thickness of the pipe. According to the bibliographic revision performed and recently published, this kind of coupled numerical simulation of in-service repair or pipelines by direct deposition for repairing internal defects considering the prevention of burn-through and hydrogen cracking has not been done.

Ducto Soldadura en servicio Quemada pasante Agrietamiento por hidrógeno Reparación de soldadura Simulación numérica Pipeline In-service welding Burn-through Hydrogen cracking Weld repair Numerical simulation INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS OTRAS ESPECIALIDADES TECNOLÓGICAS OTRAS ESPECIALIDADES TECNOLÓGICAS

Modeling the growth, yield and N dynamics of wheat for decoding the tillage and nitrogen nexus in 8-years long-term conservation agriculture based maize-wheat system

C.M. Parihar Dipaka Ranjan Sena Prakash Chand Ghasal Shankar Lal Jat Yashpal Singh Saharawat Mahesh Gathala Upendra Singh Hari Sankar Nayak (2024, [Artículo])

Context: Agricultural field experiments are costly and time-consuming, and their site-specific nature limits their ability to capture spatial and temporal variability. This hinders the transfer of crop management information across different locations, impeding effective agricultural decision-making. Further, accurate estimates of the benefits and risks of alternative crop and nutrient management options are crucial for effective decision-making in agriculture. Objective: The objective of this study was to utilize the Crop Environment Resource Synthesis CERES-Wheat model to simulate crop growth, yield, and nitrogen dynamics in a long-term conservation agriculture (CA) based wheat system. The study aimed to calibrate the model using data from a field experiment conducted during the 2019-20-2020-21 growing seasons and evaluation it with independent data from the year 2021–22. Method: Crop simulation models, such as the Crop Environment Resource Synthesis CERES-Wheat (DSSAT v 4.8), may provide valuable insights into crop growth and nitrogen dynamics, enabling decision makers to understand and manage production risk more effectively. Therefore, the present study employed the CERES-Wheat (DSSAT v 4.8) model and calibrated it using field data, including plant phenological phases, leaf area index, aboveground biomass, and grain yield from the 2019-20-2020-21 growing seasons. An independent dataset from the year 2021–22 was used for model evaluation. The model was used to investigate the relationship between growing degree days (GDD), temperature, nitrate and ammonical concentration in soil, and nitrogen uptake by the crop. Additionally, the study explored the impact of contrasting tillage practices and fertilizer nitrogen management options on wheat yields. The experimental site is situated at ICAR-Indian Agricultural Research Institute (IARI), New Delhi, representing Indian Trans-Gangetic Plains Zone (28o 40’N latitude, 77o 11’E longitude and an altitude of 228 m above sea level). The treatments consist of four nitrogen management options, viz., N0 (zero nitrogen), N150 (150 kg N ha−1 through urea), GS (Green seeker based urea application) and USG (urea super granules @150 kg N ha−1) in two contrasting tillage systems, i.e., CA-based zero tillage (ZT) and conventional tillage (CT). Result: The outcomes exhibited favorable agreement between the model’s simulations and the observed data for crop phenology (With less than 2 days variation in 50% onset of flowering), grain and biomass yield (Root mean square error; RMSE 336 kg ha−1 and 649 kg ha−1, respectively), and leaf area index (LAI) (RMSE 0.28 & normalized RMSE; nRMSE 6.69%). The model effectively captured the nitrate-N (NO3−-N) dynamics in the soil profile, exhibiting a remarkable concordance with observed data, as evident from its low RMSE = 12.39 kg ha−1 and nRMSE = 13.69%. Moreover, as it successfully simulated the N balance in the production system, the nitrate leaching and ammonia volatilization pattern as described by the model are highly useful to understand these critical phenomena under both conventional tillage (CT) and CA-based Zero Tillage (ZT) treatments. Conclusion: The study concludes that the DSSAT-CERES-Wheat model has significant potential to assess the impacts of tillage and nitrogen management practices on crop growth, yield, and soil nitrogen dynamics in the western Indo-Gangetic Plains (IGP) region. By providing reliable forecasts within the growing season, this modeling approach can facilitate better planning and more efficient resource management. Future implications: The successful implementation of the DSSAT-CERES-Wheat model in this study highlights its applicability in assessing crop performance and soil dynamics. Future research should focus on expanding the model’s capabilities by reducing its sensitivity to initial soil nitrogen levels to refine its predictions further. Moreover, the model’s integration with decision support systems and real-time data can enhance its usefulness in aiding agricultural decision-making and supporting sustainable crop management practices.

Nitrogen Dynamics Mechanistic Crop Growth Models Crop Simulation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA NITROGEN CONSERVATION AGRICULTURE WHEAT MAIZE CROP GROWTH RATE SIMULATION MODELS

Análisis a escala atómica de interfases magnéticas con aplicaciones en espintrónica

Atomic scale analysis of magnetic interfases with spintronics applications

Rocio González Díaz (2023, [Tesis de maestría])

La espintrónica es un área de la nanociencia que tiene por cometido el estudio y manipulación del espín de los electrones para el desarrollo y mejoramiento de dispositivos electrónicos. De manera particular, se ha orientado a la búsqueda de materiales para la fabricación de memorias magnéticas de acceso aleatorio (MRAM), diseñadas a partir de uniones túnel magnéticas (MTJ). Dichas uniones son heteroestructuras construidas a partir de un material aislante en cuya capa superior e inferior se dispone un compuesto ferromagnético. Una de las características de estos dispositivos es que presentan una anisotropía magnética perpendicular (PMA) y un efecto de torque por transferencia de espín (STT). Recientemente, un estudio experimental señala que la heteroestructura B2-CoAl/L10-MnAl es un candidato idóneo para la fabricación de MRAM, pues presenta PMA y STT. Sin embargo, en el trabajo experimental no se reporta un análisis de la estabilidad termodinámica de la heteroestructura. Dicho lo anterior, en este trabajo se hizo un estudio de la estabilidad termodinámica y estructural de B2-CoAl/L10-MnAl usando la teoría del funcional de la densidad (DFT). Se propusieron diferentes modelos de interfaz CoAl/MnAl y se determinó a través de un análisis energético cuál es la interfaz más estable. Los resultados obtenidos indican que la interfaz más estable sucede entre la última capa de Al del CoAl y la primera capa de Mn del MnAl. Además, se comprobó un efecto PMA en la heteroestructura B2-CoAl/L10-MnAl y se determinó que este comportamiento se origina esencialmente debido a la naturaleza ferromagnética de MnAl, pues CoAl no presenta características ferromagnéticas.

Spintronics is nanoscience area whose aim is the study and manipulation of electrons spin to development and improvement of electronic devices. In a particular way, the spintronics has focused to search of new materials to fabrication of magnetic random-access memory (MRAM), which are designed from devices call magnetic tunnel junctions (MTJ). This devices are heterostructures built from an insulating material with a ferromagnetic compound on top and bottom layers and characterized by the perpendicular magnetic anisotropy and spin-transfer torque (STT) effects prensent on it. Recently, an experimental study indicates the B2-CoAl/L10-MnAl heterostructure is a suitable candidate for the fabrication of MRAM based on MTJ devices. Nevertheless, the thermodynamic stability of the heteroestructure is not reported in the experimental work. Therefore, in this work a study of the thermodynamic and structural stability of B2-CoAl/L10-MnAl was performed using density functional theory (DFT). Different CoAl/MnAl interface models were proposed and the most stable interface was determined by an energy analysis. The results obtained, indicate that the most stable interface occurs between the last Al layer of CoAl and the first Mn layer of MnAl. In addition, a PMA effect in the B2-CoAl/L10-MnAl heterostructure was demonstrated and it was determined that this behaviour is essentially due to the ferromagnetic nature of MnAl, since CoAl does not present ferromagnetic characteristics.

simulaciones computacionales, interfases magnéticas, estabilidad termodinámica computational simulation, magnetic interfaces, termodinamic stability INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE MATERIALES PROPIEDADES DE LOS MATERIALES PROPIEDADES DE LOS MATERIALES

Study, suspend and optimization a spread of epidemic infections. The dynamic Monte Carlo approach

Gennadiy Burlak (2020, [Artículo])

We study a dynamics of the epidemiological infection spreading at different values of the risk factor β (a control parameter) with the using of dynamic Monte Carlo approach (DMC). In our toy model, the infection transmits due to contacts of randomly moving individuals. We show that the behavior of recovered critically depends on theβ value. For sub-critical valuesβ<βc~0.6, the number of infected cases asymptotically converges to zero, such that for a moderate risk factor the infection may disappear with time. Our simulations shown that over time, the properties of such a system asymptotically become close to the critical transition in 2D percolation system. We also analyzed a next ended system, which includes two additional parameters: the limits of taking on/off quarantine state. It is found that the early quarantine off does result in the irregular (with positive Lyapunov exponent) oscillatory dynamics of infection. If the lower limit of the quarantine off is small enough, the recovery dynamics acquirers a characteristic non monotonic shape with several damped peaks. The dynamics of infection spreading in case of the individuals with immunity is studied too.

Estudiamos una dinámica de la propagación de la infección epidemiológica a diferentes valores del factor de riesgo β (un parámetro de control) con el uso del enfoque dinámico de Monte Carlo (DMC). En nuestro modelo de juguete, la infección se transmite debido a los contactos de individuos que se mueven al azar. Mostramos que el comportamiento de los individuos recuperados depende críticamente del valor de β. Para valores subcríticos β<βc~0,6, el número de casos infectados converge asintóticamente a cero, de modo que para un factor de riesgo moderado la infección puede desaparecer con el tiempo. Nuestras simulaciones mostraron que, con el tiempo, las propiedades de dicho sistema se acercan asintóticamente a la transición crítica en el sistema de percolación2D. También analizamos un sistema extendido, que incluye dos parámetros adicionales: los límites de activación/desactivación del estado de cuarentena. Se encuentra que la cuarentena temprana da como resultado la dinámica oscilatoria irregular (con exponente de Lyapunov positivo) de la infección. Si el límite inferior de la cuarentena es lo suficientemente pequeño, la dinámica de recuperación adquiere una forma característica no monótona con varios picos amortiguados. También se estudia la dinámica de la propagación de la infección en el caso de los individuos con inmunidad.

INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS optimization of a spread of epidemic infections; dynamic Monte Carlo, numeric simulations.

Modelado y acoplamiento de la conductividad eléctrica e hidráulica a partir de tomografía de rocas

Modeling and coupling of electrical and hydraulic conductivity from rock tomography

Miguel Ángel Martínez Rodríguez (2022, [Tesis de maestría])

En este trabajo se emplearon técnicas de modelado numérico para simular el flujo de corriente eléctrica y de fluido a través de medios porosos con el fin de determinar el factor de resistividad y la permeabilidad, así como la distribución de los campos de densidad de corriente eléctrica y velocidad de flujo. Para el modelado de flujo eléctrico se desarrolló un algoritmo basado en diferencias finitas, mientras que para el modelado hidráulico se empleó una librería reportada en la literatura, basada en el método de redes de Boltzmann. En ambos esquemas de modelado se establecieron condiciones en la frontera poro-grano para modelar los procesos físicos exclusivamente en el espacio poroso. Los valores estimados de factor de resistividad y de permeabilidad, así como la porosidad, se emplearon para estudiar las correlaciones entre estas propiedades a través de relaciones petrofísicas. Para esto, se propuso una expresión que relaciona la permeabilidad y la porosidad y, empleando una relación existente entre el factor de resistividad y la porosidad, se propuso también una relación directa entre la permeabilidad y el factor de resistividad. Las relaciones propuestas fueron aplicadas a los valores numéricos obtenidos para paquetes de esferas generados numéricamente y se encontró que se ajustan mejor a los datos en comparación con las relaciones más comúnmente utilizadas, especialmente para porosidades altas. Se mostró también que estas relaciones petrofísicas toman la forma de las relaciones más comunes conocidas cuando se trata con porosidades bajas. Valores obtenidos de imágenes digitales de un paquete de esferas sintético y una muestra de dolomita mostraron que las expresiones para porosidades bajas son suficientes para ajustar datos de medios porosos con porosidades menores a un valor entre 0.3 y 0.4. Finalmente, se analizaron el factor de resistividad, la permeabilidad, las relaciones petrofísicas, y las distribuciones espaciales y estadísticas de los campos vectoriales de flujo se analizaron para comparar los fenómenos de transporte eléctrico e hidráulico, encontrando que algunos factores, como la porosidad efectiva, son importantes en ambos fenómenos de flujo; mientras que otros, como la adherencia del fluido a las paredes del poro, son particularmente relevantes para el flujo hidráulico.

In this work, numerical modeling techniques were used to simulate the flow of electric current and fluid through porous media in order to determine the resistivity factor and permeability, as well as the distribution of electric current density and flow velocity fields. For electric flow modeling, an algorithm based on finite differences was developed, while for hydraulic modeling, a library reported in the literature, based on lattice Boltzmann method, was used. In both modeling schemes, pore-grain boundary conditions were established to model the physical processes exclusively in the pore space. The estimated values of resistivity factor and permeability, as well as porosity, were used to study the correlations between these properties through petrophysical relationships. An expression relating permeability and porosity was proposed and, using an existing relationship between the resistivity factor and the porosity, a direct relation between permeability and resistivity factor was also proposed. The proposed relations were applied to data obtained for numerically generated sphere packs and were found to fit the data better than the most commonly used relationships, especially for high porosities. It was also shown that these petrophysical relationships take the form of the most common relationships known when dealing with low porosities. Modeling data on digital images of a synthetic sphere pack and a dolomite sample showed that the expressions for low porosities are sufficient to fit data from porous media with porosities lower than 0.3 to 0.4. Finally, resistivity factors, permeabilities, petrophysical relationships, and spatial and statistical distributions of flow vector fields were analyzed to compare electrical and hydraulic transport phenomena, finding that some factors, such as the effective porosity, are important in both flow phenomena; whereas some other, such as the pore-wall adherence, are particularly relevant to hidraulic flux.

Física de rocas, modelado numérico, relaciones petrofísicas, fenómenos de transporte, factor de resistividad, permeabilidad, porosidad, tomografía de rocas, campos vectoriales, distribución estadística Rock physics, numerical modelling, petrophysical relations, transport phenomena, resistivity factor, permeability, porosity, rock tomography, vector fields, statistical distribution CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO GEOFÍSICA GEOFÍSICA DE LA MASA SÓLIDA TERRESTRE GEOFÍSICA DE LA MASA SÓLIDA TERRESTRE