Filtrar por:
Tipo de publicación
- Artículo (7)
- Tesis de maestría (2)
- Capítulo de libro (1)
- Objeto de congreso (1)
- Poster de congreso (1)
Autores
- José Luis Hernández-Hernández (3)
- Mario Hernández Hernández (3)
- Razieh Pourdarbani (2)
- Sajad Sabzi (2)
- Abbyssinia Mushunje (1)
Años de Publicación
Editores
- Agronomy (1)
- CICESE (1)
- Plants (1)
- Remote Sens (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (7)
- Repositorio Institucional de Ciencia Abierta de la Universidad Autónoma de Guerrero (3)
- REPOSITORIO INSTITUCIONAL DEL CIO (1)
- Repositorio Institucional CICESE (1)
Tipos de Acceso
- oa:openAccess (12)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (7)
- CIENCIAS TECNOLÓGICAS (5)
- INGENIERÍA Y TECNOLOGÍA (5)
- TECNOLOGÍA DE LOS ALIMENTOS (3)
- GENOMICS (2)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Leah Mungai Joseph Messina Leo Zulu Jiaguo Qi Sieglinde Snapp (2022, [Artículo])
Multilayer Perceptrons CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE LAND USE POPULATION SATELLITE IMAGERY TEXTURE LAND COVER NEURAL NETWORKS REMOTE SENSING
Multi-environment genomic prediction of plant traits using deep learners with dense architecture
Osval Antonio Montesinos-Lopez Jose Crossa (2018, [Artículo])
Shared Data Resources Deep Learning Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ACCURACY GENOMICS NEURAL NETWORKS FORECASTING DATA MARKER-ASSISTED SELECTION
A Novel Technique for Classifying Bird Damage to Rapeseed Plants Based on a Deep Learning Algorithm.
Ali Mirzazadeh Afshin Azizi Yousef Abbaspour_Gilandeh José Luis Hernández-Hernández Mario Hernández Hernández Iván Gallardo Bernal (2021, [Artículo])
Estimation of crop damage plays a vital role in the management of fields in the agricultura sector. An accurate measure of it provides key guidance to support agricultural decision-making systems. The objective of the study was to propose a novel technique for classifying damaged crops based on a state-of-the-art deep learning algorithm. To this end, a dataset of rapeseed field images was gathered from the field after birds¿ attacks. The dataset consisted of three classes including undamaged, partially damaged, and fully damaged crops. Vgg16 and Res-Net50 as pre-trained deep convolutional neural networks were used to classify these classes. The overall classification accuracy reached 93.7% and 98.2% for the Vgg16 and the ResNet50 algorithms, respectively. The results indicated that a deep neural network has a high ability in distinguishing and categorizing different image-based datasets of rapeseed. The findings also revealed a great potential of Deep learning-based models to classify other damaged crops.
rapeseed classification damaged crops deep neural networks INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ALIMENTOS
REAL TIME EMBBEDED RGB-D SLAM USING CNNS FOR DEPTH ESTIMATION AND FEATURE EXTRACTION
Marcos Renato Rocha Hernández (2023, [Tesis de maestría])
"A robust and efficient Simultaneous Localization and Mapping (SLAM) system is essential for intelligent mobile robots to work in unknown environments. For visual SLAM algorithms, though the theoretical framework has been well established for most aspects, feature extraction and association is still empirically de signed in most cases, and can be vulnerable in complex environments. Also, most of the most robust SLAM algorithms rely on special devices like a stereo camera or depth sensors, which can be expensive and give more complexity to the system, that is why monocular depth estimation is an essential task in the computer vision community. This work shows that feature extraction and depth estimation using a monocular camera with deep convolutional neural networks (CNNs) can be incorporated into a modern SLAM framework. The proposed SLAM system utilizes two CNNs, one to detect keypoints in each im age frame, and to give not only keypoint descriptors, but also a global descriptor of the whole image and the second one to make depth estimations from a single image frame, all using only a monocular camera."
SLAM Inteligencia Artificial CNN Sistemas embebidos Redes neuronales Cámara monocular INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ORDENADORES INTELIGENCIA ARTIFICIAL INTELIGENCIA ARTIFICIAL
Tania Carolina Camacho Villa Ernesto Adair Zepeda Villarreal Julio Díaz-José Roberto Rendon-Medel Bram Govaerts (2023, [Artículo])
Social Network Analysis Farm Typologies Social Ties Strong Ties CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA INNOVATION NETWORKS PERSISTENCE SOCIAL NETWORK ANALYSIS MAIZE FARMING SYSTEMS
Chapter 9. Genome-informed discovery of genes and framework of functional genes in wheat
awais rasheed Rudi Appels (2024, [Capítulo de libro])
Wheat Genomics KASP Markers Gene Discovery Functional Markers Gene Networks CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT GENOMICS SINGLE NUCLEOTIDE POLYMORPHISMS FUNCTIONAL GENOMICS
Difusión de cursos que la Fundación Carlos Slim ofrece en aprende.org
Cesar Petroli (2021, [Poster de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TRAINING AGRICULTURAL TRAINING SOCIAL NETWORKS TRAINING COURSES SUSTAINABLE AGRICULTURE
E. African spring wheat breeding pipeline and Network (CIMMYT-KALRO)
sridhar bhavani (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT PLANT BREEDING RESEARCH NETWORKS
Sorghum value chain analysis in semi-arid Zimbabwe
Abbyssinia Mushunje Munyaradzi Junia Mutenje Charles Pfukwa (2019, [Artículo])
Small Scale Farmers Extension Networks CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRO-INDUSTRIAL SECTOR MARKETING MARGINS SORGHUM VALUE CHAINS
Razieh Pourdarbani Sajad Sabzi Mario Hernández Hernández José Luis Hernández-Hernández Ginés García_Mateos Davood Kalantari José Miguel Molina Martínez (2019, [Artículo])
Color segmentation is one of the most thoroughly studied problems in agricultural applications of remote image capture systems, since it is the key step in several different tasks, such as crop harvesting, site specific spraying, and targeted disease control under natural light. This paper studies and compares five methods to segment plum fruit images under ambient conditions at 12 different light intensities, and an ensemble method combining them. In these methods, several color features in different color spaces are first extracted for each pixel, and then the most e
ective features are selected using a hybrid approach of artificial neural networks and the cultural algorithm (ANN-CA). The features selected among the 38 defined channels were the b* channel of L*a*b*, and the color purity index, C*, from L*C*h. Next, fruit/background segmentation is performed using five classifiers: artificial neural network-imperialist competitive algorithm (ANN-ICA); hybrid artificial neural network-harmony search (ANN-HS); support vector machines (SVM); k nearest neighbors (kNN); and linear discriminant analysis (LDA). In the ensemble method, the final class for each pixel is determined using the majority voting method. The experiments showed that the correct classification rate for the majority voting method excluding LDA was 98.59%, outperforming the results of the constituent methods.
remote sensing in agriculture artificial neural network hybridization environmental conditions majority voting plum segmentation INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ALIMENTOS