Filtrar por:
Tipo de publicación
- Artículo (114)
- Objeto de congreso (44)
- Capítulo de libro (6)
- Tesis de maestría (5)
- Documento de trabajo (5)
Autores
- sridhar bhavani (10)
- Jelle Van Loon (8)
- Alison Bentley (7)
- Govindan Velu (7)
- Ravi Singh (6)
Años de Publicación
Editores
- CICESE (3)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información. (2)
- Frontiers Media S.A. (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (172)
- Repositorio Institucional CICESE (3)
- Repositorio Institucional Zaloamati (2)
- Repositorio Institucional CIBNOR (1)
Tipos de Acceso
- oa:openAccess (178)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (173)
- WHEAT (85)
- CLIMATE CHANGE (21)
- MAIZE (20)
- YIELDS (18)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Genome-based predictions of sub-genome genetic interactions effects in wheat populations
David González-Diéguez (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOMES WHEAT GENETICS MARKER-ASSISTED SELECTION GENETIC VARIANCE HYBRIDS
Jingyang Tong Ming Li xianchun xia Zhonghu He Yong Zhang (2023, [Artículo])
Grain Yield KASP Marker QTL Mapping SNP Chip CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GRAIN YIELDS QUANTITATIVE TRAIT LOCI MAPPING SINGLE NUCLEOTIDE POLYMORPHISMS WHEAT BREEDING
Genomic approaches for improving grain zinc and iron content in wheat
Chandan Roy Govindan Velu (2022, [Artículo])
Genome-Wide Association Study New Breeding Techniques Genomic Selection CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOFORTIFICATION MARKER-ASSISTED SELECTION MALNUTRITION BREEDING QUANTITATIVE TRAIT LOCI MAPPING SPEED BREEDING ZINC IRON WHEAT
Sonam Sherpa virender kumar Andrew Mcdonald (2024, [Artículo])
Crop residue burning is a common practice in many parts of the world that causes air pollution and greenhouse gas (GHG) emissions. Regenerative practices that return residues to the soil offer a ‘no burn’ pathway for addressing air pollution while building soil organic carbon (SOC). Nevertheless, GHG emissions in rice-based agricultural systems are complex and difficult to anticipate, particularly in production contexts with highly variable hydrologic conditions. Here we predict long-term net GHG fluxes for four rice residue management strategies in the context of rice-wheat cropping systems in Eastern India: burning, soil incorporation, livestock fodder, and biochar. Estimations were based on a combination of Tier 1, 2, and 3 modelling approaches, including 100-year DNDC simulations across three representative soil hydrologic categories (i.e., dry, median, and wet). Overall, residue burning resulted in total direct GHG fluxes of 2.5, 6.1, and 8.7 Mg CO2-e in the dry, median, and wet hydrologic categories, respectively. Relative to emissions from burning (positive values indicate an increase) for the same dry to wet hydrologic categories, soil incorporation resulted in a −0.2, 1.8, or 3.1 Mg CO2-e change in emissions whereas use of residues for livestock fodder increased emissions by 2.0, 2.1, or 2.3 Mg CO2-e. Biochar reduced emissions relative to burning by 2.9 Mg CO2-e in all hydrologic categories. This study showed that the production environment has a controlling effect on methane and, therefore, net GHG balance. For example, wetter sites had 2.8–4.0 times greater CH4 emissions, on average, than dry sites when rice residues were returned to the soil. To effectively mitigate burning without undermining climate change mitigation goals, our results suggest that geographically-target approaches should be used in the rice-based systems of Eastern India to incentivize the adoption of regenerative ‘no burn’ residue management practices.
Soil Carbon Rice Residue Burning Life Cycle Assessment CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL CARBON RICE LIFE CYCLE GREENHOUSE GASES CLIMATE CHANGE
Gerald Blasch (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA REMOTE SENSING WHEAT CROPS DISEASES
Leonardo Abdiel Crespo Herrera (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT PESTS CLIMATE CHANGE APHIDOIDEA DISEASE RESISTANCE
Trade-offs in the genetic control of functional and nutritional quality traits in UK winter wheat
Nick Fradgley Keith Gardner Stéphanie M. Swarbreck Alison Bentley (2022, [Artículo])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT GENETIC CONTROL NUTRITIVE VALUE QUANTITATIVE TRAIT LOCI
Digital artifacts reveal development and diffusion of climate research
Bia Carneiro Tek Sapkota (2022, [Artículo])
Accessible Knowledge Impact of Outputs Traditional Bibliometric Analyses Hyperlink Analysis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE DIFFUSION MAIZE MINING ORGANIZATION SOCIAL MEDIA SOCIAL NETWORK ANALYSIS WHEAT TEXT MINING
Estimating wheat canopy temperature from meteorological data: a multi-location approach
Carlo Montes Azam Lashkari Urs Schulthess (2021, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CANOPY WHEAT TEMPERATURE METEOROLOGICAL OBSERVATIONS
Impact of manures and fertilizers on yield and soil properties in a rice-wheat cropping system
Alison Laing Akbar Hossain (2023, [Artículo])
The use of chemical fertilizers under a rice-wheat cropping system (RWCS) has led to the emergence of micronutrient deficiency and decreased crop productivity. Thus, the experiment was conducted with the aim that the use of organic amendments would sustain productivity and improve the soil nutrient status under RWCS. A three-year experiment was conducted with different organic manures i.e. no manure (M0), farmyard manure@15 t ha-1 (M1), poultry manure@6 t ha-1(M2), press mud@15 t ha-1(M3), rice straw compost@6 t ha-1(M4) along with different levels of the recommended dose of fertilizer (RDF) i.e. 0% (F1), 75% (F2 and 100% (F3 in a split-plot design with three replications and plot size of 6 m x 1.2 m. Laboratory-based analysis of different soil as well as plant parameters was done using standard methodologies. The use of manures considerably improved the crop yield, macronutrients viz. nitrogen, phosphorus, potassium and micronutrients such as zinc, iron, manganese and copper, uptake in both the crops because of nutrient release from decomposed organic matter. Additionally, the increase in fertilizer dose increased these parameters. The system productivity was maximum recorded under F3M1 (13,052 kg ha-1) and results were statistically identical with F3M2 and F3M3. The significant upsurge of macro and micro-nutrients in soil and its correlation with yield outcomes was also observed through the combined use of manures as well as fertilizers. This study concluded that the use of 100% RDF integrated with organic manures, particularly farmyard manure would be a beneficial resource for increased crop yield, soil nutrient status and system productivity in RWCS in different regions of India.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ORGANIC FERTILIZERS YIELDS SOIL PROPERTIES RICE WHEAT CROPPING SYSTEMS