Búsqueda avanzada


Área de conocimiento




5655 resultados, página 1 de 10

Sentido y significación del habla en la actuación

Claudia Fragoso Susunaga (2023, [Capítulo de libro])

Capítulo número 2 de la Sección El juego de los signos.

El objetivo de este texto es identificar los elementos de los actos de habla y la pragmática lingüística, que tienen que ver con procesos de significación e intención en la enunciación de un texto dramático-escénico o de algún personaje, pensando en las actividades de doblaje, radio-drama, videojuegos, audiolibros y la escena misma. Desarrollando, desde una visión transdisciplinaria la interacción de diferentes campos del conocimiento, como lo son el teatro, la semiótica y la lingüística e incluso todas aquellas disciplinas humanas que comprenden el habla y su interés en los procesos de comunicación. Las repercusiones de este análisis pueden recaer directamente en la formación y desempeño actoral, favoreciendo procesos de análisis de texto, en función a un enriquecimiento de la expresión comunicativa de actores y actrices.

Discourse analysis. Discourse analysis, Literary. Voice actors and actresses. Modality (Linguistics) Semiotics--Social aspects. Actores y actrices de doblaje. Análisis del discurso literario. Modalidad (Lingüística) Semiótica. PC5252 HUMANIDADES Y CIENCIAS DE LA CONDUCTA CIENCIAS DE LAS ARTES Y LAS LETRAS TEORÍA, ANÁLISIS Y CRÍTICA DE LAS BELLAS ARTES

Big data, small explanatory and predictive power: Lessons from random forest modeling of on-farm yield variability and implications for data-driven agronomy

Martin van Ittersum (2023, [Artículo])

Context: Collection and analysis of large volumes of on-farm production data are widely seen as key to understanding yield variability among farmers and improving resource-use efficiency. Objective: The aim of this study was to assess the performance of statistical and machine learning methods to explain and predict crop yield across thousands of farmers’ fields in contrasting farming systems worldwide. Methods: A large database of 10,940 field-year combinations from three countries in different stages of agricultural intensification was analyzed. Random effects models were used to partition crop yield variability and random forest models were used to explain and predict crop yield within a cross-validation scheme with data re-sampling over space and time. Results: Yield variability in relative terms was smallest for wheat and barley in the Netherlands and for wheat in Ethiopia, intermediate for rice in the Philippines, and greatest for maize in Ethiopia. Random forest models comprising a total of 87 variables explained a maximum of 65 % of cereal yield variability in the Netherlands and less than 45 % of cereal yield variability in Ethiopia and in the Philippines. Crop management related variables were important to explain and predict cereal yields in Ethiopia, while predictive (i.e., known before the growing season) climatic variables and explanatory (i.e., known during or after the growing season) climatic variables were most important to explain and predict cereal yield variability in the Philippines and in the Netherlands, respectively. Finally, model cross-validation for regions or years not seen during model training reduced the R2 considerably for most crop x country combinations, while for wheat in the Netherlands this was model dependent. Conclusion: Big data from farmers’ fields is useful to explain on-farm yield variability to some extent, but not to predict it across time and space. Significance: The results call for moderate expectations towards big data and machine learning in agronomic studies, particularly for smallholder farms in the tropics where model performance was poorest independently of the variables considered and the cross-validation scheme used.

Model Accuracy Model Precision Linear Mixed Models CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MACHINE LEARNING SUSTAINABLE INTENSIFICATION BIG DATA YIELDS MODELS AGRONOMY

A line follower robot implementation using Lego's Mindstorms Kit and Q-Learning

VICTOR RICARDO CRUZ ALVAREZ ENRIQUE HIDALGO PEÑA HECTOR GABRIEL ACOSTA MESA (2012, [Artículo])

Un problema común al trabajar con robots móviles es que la fase de programación puede ser un proceso largo, costoso y difícil para los programadores. Los Algoritmos de Aprendizaje por Refuerzo ofrecen uno de los marcos de trabajo más generales en el ámbito de aprendizaje de máquina. Este trabajo presenta un enfoque usando el algoritmo de Q-Learning en un robot Lego para que aprenda "por sí mismo" a seguir una línea negra dibujada en una superficie blanca. El entorno de programación utilizado en este trabajo es Matlab.

INGENIERÍA Y TECNOLOGÍA Algoritmos de aprendizaje reforzado Q-learning (Algoritmo de aprendizaje reforzado) Lego Mindstorms (Robótica) Matlab Reinforcement learning algorithms Q-Learning (Reinforcement learning algorithm) Lego Mindstorms (Robotics) Matlab

Distance learning for farmers: Experience during the pandemic

Andrea Gardeazabal (2023, [Documento de trabajo])

In response to the COVID-19 pandemic's disruption of farmer training—a crucial component for enhancing the resilience and livelihoods of smallholder farmers—CIMMYT innovated educational solutions to sustain capacity building in agri-food systems. Addressing the challenges of limited mobile device access, poor internet connectivity, and digital illiteracy, CIMMYT implemented two pilot projects in Mexico. These projects facilitated distance learning for adult farmers in rural areas, employing both internet-based and non-internet methods. The non-internet approach utilized traditional media like print, while the internet-based approach leveraged WhatsApp for educational content delivery. Building on these experiences, CIMMYT expanded its offerings by creating micro -courses delivered through WhatsApp, hosted on the Co-LAB's new Learning Network platform, specifically targeting farmers. This paper delves into the various strategies, methods, and techniques adopted, documenting the learning outcomes, results, and key conclusions drawn from these innovative training initiatives.

Distance Learning Digital Inclusion Innovative Training CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DISTANCE EDUCATION CAPACITY DEVELOPMENT METHODS COMMUNICATION TECHNOLOGY