Búsqueda avanzada


Área de conocimiento




83 resultados, página 8 de 9

How diverse are farming systems on the Eastern Gangetic Plains of South Asia? A multi-metric and multi-country assessment

Brendan Brown Pragya Timsina Emma Karki (2023, [Artículo])

While crop diversification has many benefits and is a stated government objective across the Eastern Gangetic Plains (EGP) of South Asia, the complexity of assessment has led to a rather limited understanding on the progress towards, and status of, smallholder crop diversification. Most studies focus on specific commodities or report as part of a singular index, use outdated secondary data, or implement highly localized studies, leading to broad generalisations and a lack of regional comparison. We collected representative primary data with more than 5000 households in 55 communities in Eastern Nepal, West Bengal (India) and Northwest Bangladesh to explore seasonally based diversification experiences and applied novel metrics to understand the nuanced status of farm diversification. While 66 crops were commercially grown across the region, only five crops and three crop families were widely grown (Poaceae, Malvaceae, and Brassicaceae). Non-cereal diversification across the region was limited (1.5 crops per household), though regional differentiation were evident particularly relating to livestock and off-farm activities, highlighting the importance of cross border studies. In terms of farmer's largest commercial plots, 20% of systems contained only rice, and 57% contained only rice/wheat/maize, with substantial regional diversity present. This raises concerns regarding the extent of commercially oriented high value and non-cereal diversification, alongside opportunities for diversification in the under-diversified pre-monsoon and monsoon seasons. Future promotional efforts may need to focus particularly on legumes to ensure the future sustainability and viability of farming systems.

Agricultural Production Systems Farming Systems Change CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURAL PRODUCTION CROPPING SYSTEMS DIVERSIFICATION FARMING SYSTEMS SUSTAINABLE INTENSIFICATION

Seed integrity, effect of temperature and storage time on germination of Populus luziarum and P. primaveralepensis, endangered subtropical species from Mexico

César Jacobo Pereira MIGUEL ANGEL MUÑIZ CASTRO JOSE ANTONIO VAZQUEZ GARCIA Joel David Flores Rivas ALEJANDRO MUÑOZ URIAS FRANCISCO MARTIN HUERTA MARTINEZ (2022, [Artículo])

"Background: Populus luziarum and P. primaveralepensis are endemic species of western Mexico; growing in riparian forests they are critically endangered. The best way to conserve their seeds is unknown, which could be limiting for their conservation.

Hypothesis: The germinability of both subtropical species is like that of boreal and template Salicaceae species that disperse seeds in spring and early summer, as they germinate quickly with high percentages, and rapidly lose their viability when stored at ambient temperature.

Studied species: Populus luziarum and P. primaveralepensis. Study site and dates: Western Trans-Mexican Volcanic Belt. Jalisco, Mexico. October 2019.

Methods: The physical integrity of the seeds was assessed by X-ray imaging and compared with germinability. In addition, the effect of storage time (nine weeks) under two temperatures (4 and 21 °C) on the percentage and mean germination rate was evaluated.

Results: No significant differences were found between physical integrity and germination in freshly collected seeds for both species. Germination in the first 24 hrs was 91 and 95 % for Populus luziarum and P. primaveralepensis, respectively (week 0). Germination percentages were lower when stored at 21 °C, but P. primaveralepensis was decreased more slowly.

Conclusions: Seeds of subtropical Populus respond similarly to those of species from temperate and boreal climates with early seed dispersal, a crucial condition for establishing ex situ reforestation and conservation programs."

Salicaceae Seed physical integrity Seed storage conditions Subtropical endemic species White poplars BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) BIOLOGÍA VEGETAL (BOTÁNICA)

The input reduction principle of agroecology is wrong when it comes to mineral fertilizer use in sub-Saharan Africa

Gatien Falconnier Marc Corbeels Frédéric Baudron Antoine Couëdel leonard rusinamhodzi bernard vanlauwe Ken Giller (2023, [Artículo])

Can farmers in sub-Saharan Africa (SSA) boost crop yields and improve food availability without using more mineral fertilizer? This question has been at the center of lively debates among the civil society, policy-makers, and in academic editorials. Proponents of the “yes” answer have put forward the “input reduction” principle of agroecology, i.e. by relying on agrobiodiversity, recycling and better efficiency, agroecological practices such as the use of legumes and manure can increase crop productivity without the need for more mineral fertilizer. We reviewed decades of scientific literature on nutrient balances in SSA, biological nitrogen fixation of tropical legumes, manure production and use in smallholder farming systems, and the environmental impact of mineral fertilizer. Our analyses show that more mineral fertilizer is needed in SSA for five reasons: (i) the starting point in SSA is that agricultural production is “agroecological” by default, that is, very low mineral fertilizer use, widespread mixed crop-livestock systems and large crop diversity including legumes, but leading to poor soil fertility as a result of widespread soil nutrient mining, (ii) the nitrogen needs of crops cannot be adequately met solely through biological nitrogen fixation by legumes and recycling of animal manure, (iii) other nutrients like phosphorus and potassium need to be replaced continuously, (iv) mineral fertilizers, if used appropriately, cause little harm to the environment, and (v) reducing the use of mineral fertilizers would hamper productivity gains and contribute indirectly to agricultural expansion and to deforestation. Yet, the agroecological principles directly related to soil fertility—recycling, efficiency, diversity—remain key in improving soil health and nutrient-use efficiency, and are critical to sustaining crop productivity in the long run. We argue for a nuanced position that acknowledges the critical need for more mineral fertilizers in SSA, in combination with the use of agroecological practices and adequate policy support.

Manure Crop Yields Smallholder Farming Systems Environmental Hazards CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOLOGICAL NITROGEN FIXATION LEGUMES NUTRIENT BALANCE SOIL FERTILITY AGROECOLOGY YIELD INCREASES LITERATURE REVIEWS

Closing the yield gap of soybean (Glycine max (L.) Merril) in Southern Africa: a case of Malawi, Zambia, and Mozambique

Siyabusa Mkuhlani Isaiah Nyagumbo (2023, [Artículo])

Introduction: Smallholder farmers in Sub-Saharan Africa (SSA) are increasingly producing soybean for food, feed, cash, and soil fertility improvement. Yet, the difference between the smallholder farmers’ yield and either the attainable in research fields or the potential from crop models is wide. Reasons for the yield gap include low to nonapplication of appropriate fertilizers and inoculants, late planting, low plant populations, recycling seeds, etc. Methods: Here, we reviewed the literature on the yield gap and the technologies for narrowing it and modelled yields through the right sowing dates and suitable high-yielding varieties in APSIM. Results and Discussion: Results highlighted that between 2010 and 2020 in SSA, soybean production increased; however, it was through an expansion in the cropped area rather than a yield increase per hectare. Also, the actual smallholder farmers’ yield was 3.8, 2.2, and 2.3 times lower than the attainable yield in Malawi, Zambia, and Mozambique, respectively. Through inoculants, soybean yield increased by 23.8%. Coupling this with either 40 kg ha−1 of P or 60 kg ha−1 of K boosted the yields by 89.1% and 26.0%, respectively. Overall, application of 21–30 kg ha-1 of P to soybean in SSA could increase yields by about 48.2%. Furthermore, sowing at the right time increased soybean yield by 300%. Although these technologies enhance soybean yields, they are not fully embraced by smallholder farmers. Hence, refining and bundling them in a digital advisory tool will enhance the availability of the correct information to smallholder farmers at the right time and improve soybean yields per unit area.

Decision Support Tools Digital Tools Site-Specific Recommendations CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DECISION SUPPORT SYSTEMS LEGUMES YIELDS SOYBEANS

Effect of Nitrogen, Phosphorus and Potassium on regional organic substrates in Agave salmiana production in Huichapan, Hidalgo, Mexico

EMILIO RAYMUNDO MORALES MALDONADO MONICA GUTIERREZ ROJAS RAMON JAIME HOLGUIN PEÑA Daniel Ruiz-Juárez Jorge Luis Vega Chávez Ana Cristina Reyes Godoy (2022, [Artículo])

"Mexico has 159 species of Agave spp. In the agri-food industry stand out are Agave tequilana, A. angustifolia, and A. salmiana. A limitation to producing maguey seedlings is the low availability of organic substrates that favor plant adaptation in the field. The objective was to evaluate the effect of nitrogen (N), phosphorus (P) and potassium (K) found in substrates in response to vegetative and root growth of A. salmiana in agricultural areas of Huichapan, Hidalgo, Mexico. The treatment consisted of earthworm humus (EH) and leaf compost (LC) substrates with materials from the region with different percentages of EH (100, 75, 50%), LC (5, 10%), and sand (20, 40%). The treatments were applied with 14 random replications in two phases in seeds and 40-day-seedlings. The variables evaluated were NPK amount and pH in substrates. The physiological variables measured were plant height, leaf number, stem diameter, root length, and volume. Significant differences (P≤0.05) were observed in seedling physiology due to the effect of the treatment. The best agronomic responses (plant growth and root length/weight) of Agave seedlings were T5 (75% earthworm humus + 20% sand + 5% leaf-soil) and T6 (50% earthworm humus + 40% sand + 10% leaf-soil); in both treatments, the NPK percentages were different from the control (Haplic Phaeozem soil) group. The final concentration of NPK in T6 was N = 0.04%, P = 398.13 mg Kg-1 and K = 11.88 meq 100g-1 . The results infer that NPK availability in soil and progressive acidification (initial pH = 8.6, final pH = 7.4) of the substrate can favorably influence the plant response. The interactions between NPK availability in the substrate and their use for a better response in maguey seedling adaptability open up new lines of research on the productive systems in the región of Huichapan, Hidalgo, Mexico."

maguey, nutritional quality, plant physiology, productive soils, seedling BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) FERTILIDAD DEL SUELO FERTILIDAD DEL SUELO

Isolation and characterization of endophytic bacteria associated with roots of jojoba (Simmondsia chinensis (Link) Schneid)

RICARDO VAZQUEZ JUAREZ TANIA ZENTENO SAVIN ENRIQUE MORALES BOJORQUEZ Elvia Pérez Rosales Lilia Alcaráz Meléndez María Esther Puente Eduardo Quiroz Guzmán (2017, [Artículo])

"In this communication, the diversity and beneficial characteristics of endophytic bacteria have been studied in Simmondsia chinensis that has industrial importance because of the quality of its seed oil. Endophytes were isolated (N = 101) from roots of the jojoba plants collected, of which eight were identified by partial sequencing of the 16S rDNA gene. The isolated bacteria were Bacillus sp., Methylobacterium aminovorans, Oceanobacillus kimchi, Rhodococcus pyridinivorans and Streptomyces sp. All isolates had at least one positive feature, characterizing them as potential plant growth promoting bacteria. In this study, R. pyridinivorans and O. kimchi are reported as plant growth promoters."

Endophytic bacteria, plant growth promoters, Simmondsia chinensis, seed oil BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA MICROBIOLOGÍA BACTERIOLOGÍA BACTERIOLOGÍA

How a holobiome perspective could promote intensification, biosecurity and eco-efficiency in the shrimp aquaculture industry

Eric Daniel Gutiérrez Pérez RICARDO VAZQUEZ JUAREZ FRANCISCO JAVIER MAGALLON BARAJAS MIGUEL ANGEL MARTINEZ MERCADO GRISEL ALEJANDRA ESCOBAR ZEPEDA Paola Magallón Servín (2022, [Artículo])

"The aquaculture industry faces many challenges regarding the intensification of shrimp rearing systems. One of these challenges is the release of excessive amounts of nitrogen and phosphorus into coastal areas, causing disruption in nutrient cycling and microbial equilibrium, which are important for coastal productivity. Biosecurity within the shrimp rearing systems can also be compromised by disruption to the nutrient fluxes, and as consequence the microbiome of the system. In certain conditions, these changes could lead to the blooming of potentially pathogenic bacteria. These changes in the external microbiome of the system and the constant fluctuations of nutrients can affect the intestinal microbiome of shrimp, which is involved in the growth and development of the host, affecting nutrient absorption, regulating metabolic processes, synthesising vitamins, modulating the immune response and preventing growth of pathogenic bacteria. It has been suggested that specific changes in the intestinal microbiome of Litopenaeus vannamei may be an avenue through which to overcome some of the problems that this industry faces, in terms of health, growth and waste. Recent research, however, has focussed mainly on changes in the intestinal microbiome. Researchers have overlooked the relevance of other aspects of the system, such as the microbiome from the benthic biofilms; zooplankton, plankton and bacterioplankton; and other sources of microorganisms that can directly affect the microbial status of the intestinal and epiphytic communities, especially in rearing systems that are based on intensification and microbial maturation processes, such as a biofloc system. It is therefore necessary to place holobiome studies into context, including the ‘holobiome of the aquaculture system’ (microbiomes that make up the culture system and their interactions) and not only the intestinal microbiome. Thus, we describe factors that affect the shrimp microbiome, the methodology of study, from sampling to bioinformatic workflows, and introduce the concept of the ‘holobiome of the aquaculture system’ and how this enables us to promote the intensification, biosafety and eco-efficiency of shrimp farming. The holobiome perspective implies a greater investment of resources and time for research, but it will accelerate the development of technology that will benefit the development and sustainability of the aquaculture industry."

litopenaeus vannamei, microbiome, intensification, biofloc, holobiome of aquaculture systems CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CIENCIAS AGRARIAS PRODUCCIÓN ANIMAL NUTRICIÓN NUTRICIÓN