Filtrar por:
Tipo de publicación
- Artículo (1)
Autores
- Afshin Azizi (1)
- Ali Mirzazadeh (1)
- Iván Gallardo Bernal (1)
- José Luis Hernández-Hernández (1)
- Mario Hernández Hernández (1)
Años de Publicación
- 2021 (1)
Editores
- Agronomy (1)
Repositorios Orígen
Tipos de Acceso
- oa:openAccess (1)
Idiomas
- eng (1)
Materias
- CIENCIAS TECNOLÓGICAS (1)
- INGENIERÍA Y TECNOLOGÍA (1)
- TECNOLOGÍA DE LOS ALIMENTOS (1)
- classification (1)
- damaged crops (1)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
1 resultados, página 1 de 1
A Novel Technique for Classifying Bird Damage to Rapeseed Plants Based on a Deep Learning Algorithm.
Ali Mirzazadeh Afshin Azizi Yousef Abbaspour_Gilandeh José Luis Hernández-Hernández Mario Hernández Hernández Iván Gallardo Bernal (2021, [Artículo])
Estimation of crop damage plays a vital role in the management of fields in the agricultura sector. An accurate measure of it provides key guidance to support agricultural decision-making systems. The objective of the study was to propose a novel technique for classifying damaged crops based on a state-of-the-art deep learning algorithm. To this end, a dataset of rapeseed field images was gathered from the field after birds¿ attacks. The dataset consisted of three classes including undamaged, partially damaged, and fully damaged crops. Vgg16 and Res-Net50 as pre-trained deep convolutional neural networks were used to classify these classes. The overall classification accuracy reached 93.7% and 98.2% for the Vgg16 and the ResNet50 algorithms, respectively. The results indicated that a deep neural network has a high ability in distinguishing and categorizing different image-based datasets of rapeseed. The findings also revealed a great potential of Deep learning-based models to classify other damaged crops.
rapeseed classification damaged crops deep neural networks INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ALIMENTOS