Filtros
Filtrar por:
Tipo de publicación
- Artículo (45)
- Libro (6)
- Objeto de congreso (5)
- Tesis de maestría (5)
- Artículo (1)
Autores
- Adefris Teklewold (3)
- Alison Bentley (3)
- Carlos Guzman (3)
- Christian Thierfelder (3)
- Facundo Tabbita (3)
Años de Publicación
Editores
- Multidisciplinary Digital Publishing Institute (4)
- El autor (3)
- CICESE (1)
- Centro de Investigaciones Biológicas del Noroeste, S. C. (1)
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP) (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (46)
- Repositorio Institucional CIBNOR (9)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (3)
- CIATEQ Digital (1)
- Repositorio Institucional CICESE (1)
Tipos de Acceso
- oa:openAccess (62)
- oa:embargoedAccess (1)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (52)
- MAIZE (9)
- CONSERVATION AGRICULTURE (8)
- BIOLOGÍA Y QUÍMICA (6)
- CIENCIAS AGRARIAS (6)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Estimation of general and specific combining ability effects for quality protein maize inbred lines
Adefris Teklewold Dagne Wegary Gissa (2022, [Artículo])
General Combining Ability Specific Combining Ability CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA COMBINING ABILITY MAIZE PROTEIN QUALITY INBRED LINES DATA ANALYSIS
Yendi Navarro-Noya Bram Govaerts Nele Verhulst Luc Dendooven (2022, [Artículo])
Farmers in Mexico till soil intensively, remove crop residues for fodder and grow maize often in monoculture. Conservation agriculture (CA), including minimal tillage, crop residue retention and crop diversification, is proposed as a more sustainable alternative. In this study, we determined the effect of agricultural practices and the developing maize rhizosphere on soil bacterial communities. Bulk and maize (Zea mays L.) rhizosphere soil under conventional practices (CP) and CA were sampled during the vegetative, flowering and grain filling stage, and 16S rRNA metabarcoding was used to assess bacterial diversity and community structure. The functional diversity was inferred from the bacterial taxa using PICRUSt. Conservation agriculture positively affected taxonomic and functional diversity compared to CP. The agricultural practice was the most important factor in defining the structure of bacterial communities, even more so than rhizosphere and plant growth stage. The rhizosphere enriched fast growing copiotrophic bacteria, such as Rhizobiales, Sphingomonadales, Xanthomonadales, and Burkholderiales, while in the bulk soil of CP other copiotrophs were enriched, e.g., Halomonas and Bacillus. The bacterial community in the maize bulk soil resembled each other more than in the rhizosphere of CA and CP. The bacterial community structure, and taxonomic and functional diversity in the maize rhizosphere changed with maize development and the differences between the bulk soil and the rhizosphere were more accentuated when the plant aged. Although agricultural practices did not alter the effect of the rhizosphere on the soil bacterial communities in the flowering and grain filling stage, they did in the vegetative stage.
Community Assembly Functional Diversity Intensive Agricultural Practices Plant Microbiome CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SUSTAINABLE AGRICULTURE TILLAGE SOIL BACTERIA MAIZE
Soil analysis and integrated nutrient management
Isaiah Nyagumbo (2021, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL ANALYSIS NUTRIENT MANAGEMENT SOIL FERTILITY
Performance evaluation and identification of highland quality protein maize hybrids in Ethiopia
Adefris Teklewold (2022, [Artículo])
Quality Protein Conventional Maize CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE PROTEIN QUALITY CROSS-BREEDING HYBRIDS
Carlo Montes Tek Sapkota Balwinder-Singh (2022, [Artículo])
Biomass Burning Emission Inventory Active Fires CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AIR QUALITY BIOMASS BURNING EMISSION FIRES
Research for development approaches in mixed crop-livestock systems of the Ethiopian highlands
Million Gebreyes James Hammond Lulseged Tamene Getachew Agegnehu Rabe Yahaya Anthony Whitbread (2023, [Artículo])
This study presents processes and success stories that emerged from Africa RISING's Research for Development project in the Ethiopian Highlands. The project has tested a combination of participatory tools at multiple levels, with systems thinking and concern for sustainable and diversified livelihoods. Bottom-up approaches guided the selection of technological interventions that could address the priority farming system challenges of the communities, leading to higher uptake levels and increased impact. Joint learning, appropriate technology selection, and the creation of an enabling environment such as the formation of farmer research groups, the establishment of innovation platforms, and capacity development for institutional and technical innovations were key to this study. The study concludes by identifying key lessons that focus more on matching innovations to community needs and geographies, systems orientation/integration of innovations, stepwise approaches to enhance the adoption of innovations, documenting farmers' capacity to modify innovations, building successful partnerships, and facilitating wider scaling of innovations for future implementation of agricultural research for development projects.
Action Research Systems Thinking CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA INNOVATION PARTNERSHIPS SCALING UP INTEGRATED CROP-LIVESTOCK SYSTEMS
Fernando Arellano-Martín JUAN MANUEL DUPUY RADA ROBERTH ARMANDO US SANTAMARIA José Luis Andrade Torres (2022, [Artículo])
Tropical forest soils store a third of the global terrestrial carbon and control carbon dioxide (CO2) terrestrial effluxes to the atmosphere produced by root and microbial respiration. Soil CO2 efflux varies in time and space and is known to be strongly influenced by soil temperature and water content. However, little is known about the influence of seasonality on soil CO2 efflux, especially in tropical dry forests. This study evaluated soil CO2 efflux, soil temperature, and soil volumetric water content in a semideciduous tropical forest of the Yucatan Peninsula under two sites (flat areas close to and far from hills), and three seasons: dry, wet, and early dry (a transition between the rainy and dry seasons) throughout a year. Additionally, six 24-h periods of soil CO2 efflux were measured within these three seasons. The mean annual soil CO2 efflux was 4±2.2 μmol CO2 m-2 s-1, like the mean soil CO2 efflux during the early dry season. In all seasons, soil CO2 efflux increased linearly with soil moisture, which explained 45% of the spatial-temporal variation of soil CO2 efflux. Soil CO2 efflux was higher close to than far from hills in some months. The daily variation of soil CO2 efflux was less important than its spatial and seasonal variation likely due to small diel variations in temperature. Transition seasons are common in many tropical dry forests, and they should be taken into consideration to have a better understanding of the annual soil CO2 efflux, especially under future climate-change scenarios. © 2022 Mexican Society of Soil Science. All Rights Reserved.
EARLY DRY SEASON SOIL TEMPERATURE SOIL VOLUMETRIC WATER CONTENT TROPICAL DRY FOREST BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL
Satellite imagery for high-throughput phenotyping in breeding plots
Francisco Pinto Mainassara Zaman-Allah Matthew Paul Reynolds Urs Schulthess (2023, [Artículo])
Optimized Soil Adjusted Vegetation Index CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA HIGH-THROUGHPUT PHENOTYPING SATELLITES WHEAT MAIZE BREEDING NORMALIZED DIFFERENCE VEGETATION INDEX
Impact of manures and fertilizers on yield and soil properties in a rice-wheat cropping system
Alison Laing Akbar Hossain (2023, [Artículo])
The use of chemical fertilizers under a rice-wheat cropping system (RWCS) has led to the emergence of micronutrient deficiency and decreased crop productivity. Thus, the experiment was conducted with the aim that the use of organic amendments would sustain productivity and improve the soil nutrient status under RWCS. A three-year experiment was conducted with different organic manures i.e. no manure (M0), farmyard manure@15 t ha-1 (M1), poultry manure@6 t ha-1(M2), press mud@15 t ha-1(M3), rice straw compost@6 t ha-1(M4) along with different levels of the recommended dose of fertilizer (RDF) i.e. 0% (F1), 75% (F2 and 100% (F3 in a split-plot design with three replications and plot size of 6 m x 1.2 m. Laboratory-based analysis of different soil as well as plant parameters was done using standard methodologies. The use of manures considerably improved the crop yield, macronutrients viz. nitrogen, phosphorus, potassium and micronutrients such as zinc, iron, manganese and copper, uptake in both the crops because of nutrient release from decomposed organic matter. Additionally, the increase in fertilizer dose increased these parameters. The system productivity was maximum recorded under F3M1 (13,052 kg ha-1) and results were statistically identical with F3M2 and F3M3. The significant upsurge of macro and micro-nutrients in soil and its correlation with yield outcomes was also observed through the combined use of manures as well as fertilizers. This study concluded that the use of 100% RDF integrated with organic manures, particularly farmyard manure would be a beneficial resource for increased crop yield, soil nutrient status and system productivity in RWCS in different regions of India.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ORGANIC FERTILIZERS YIELDS SOIL PROPERTIES RICE WHEAT CROPPING SYSTEMS