Filtrar por:
Tipo de publicación
- Artículo (38)
- Tesis de maestría (5)
- Objeto de congreso (2)
- Tesis de doctorado (2)
- Capítulo de libro (1)
Autores
- Jose Crossa (5)
- José Luis Hernández-Hernández (3)
- Mario Hernández Hernández (3)
- Osval Antonio Montesinos-Lopez (3)
- CARLOS ABRAHAM GUERRERO RUIZ (2)
Años de Publicación
Editores
- CICESE (4)
- & (1)
- Agronomy (1)
- Alberto Amato, IRIG-CEA Grenoble, France (1)
- Antoni Margalida, University of Lleida, Spain (1)
Repositorios Orígen
- Repositorio Institucional CICESE (21)
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (17)
- Repositorio Institucional de Ciencia Abierta de la Universidad Autónoma de Guerrero (4)
- CIATEQ Digital (3)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (2)
Tipos de Acceso
- oa:openAccess (50)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (21)
- OCEANOGRAFÍA (20)
- CIENCIAS TECNOLÓGICAS (12)
- INGENIERÍA Y TECNOLOGÍA (12)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (11)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Leah Mungai Joseph Messina Leo Zulu Jiaguo Qi Sieglinde Snapp (2022, [Artículo])
Multilayer Perceptrons CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE LAND USE POPULATION SATELLITE IMAGERY TEXTURE LAND COVER NEURAL NETWORKS REMOTE SENSING
Multi-environment genomic prediction of plant traits using deep learners with dense architecture
Osval Antonio Montesinos-Lopez Jose Crossa (2018, [Artículo])
Shared Data Resources Deep Learning Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ACCURACY GENOMICS NEURAL NETWORKS FORECASTING DATA MARKER-ASSISTED SELECTION
Razieh Pourdarbani Sajad Sabzi Mario Hernández Hernández José Luis Hernández-Hernández Ginés García_Mateos Davood Kalantari José Miguel Molina Martínez (2019, [Artículo])
Color segmentation is one of the most thoroughly studied problems in agricultural applications of remote image capture systems, since it is the key step in several different tasks, such as crop harvesting, site specific spraying, and targeted disease control under natural light. This paper studies and compares five methods to segment plum fruit images under ambient conditions at 12 different light intensities, and an ensemble method combining them. In these methods, several color features in different color spaces are first extracted for each pixel, and then the most e
ective features are selected using a hybrid approach of artificial neural networks and the cultural algorithm (ANN-CA). The features selected among the 38 defined channels were the b* channel of L*a*b*, and the color purity index, C*, from L*C*h. Next, fruit/background segmentation is performed using five classifiers: artificial neural network-imperialist competitive algorithm (ANN-ICA); hybrid artificial neural network-harmony search (ANN-HS); support vector machines (SVM); k nearest neighbors (kNN); and linear discriminant analysis (LDA). In the ensemble method, the final class for each pixel is determined using the majority voting method. The experiments showed that the correct classification rate for the majority voting method excluding LDA was 98.59%, outperforming the results of the constituent methods.
remote sensing in agriculture artificial neural network hybridization environmental conditions majority voting plum segmentation INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ALIMENTOS
A Novel Technique for Classifying Bird Damage to Rapeseed Plants Based on a Deep Learning Algorithm.
Ali Mirzazadeh Afshin Azizi Yousef Abbaspour_Gilandeh José Luis Hernández-Hernández Mario Hernández Hernández Iván Gallardo Bernal (2021, [Artículo])
Estimation of crop damage plays a vital role in the management of fields in the agricultura sector. An accurate measure of it provides key guidance to support agricultural decision-making systems. The objective of the study was to propose a novel technique for classifying damaged crops based on a state-of-the-art deep learning algorithm. To this end, a dataset of rapeseed field images was gathered from the field after birds¿ attacks. The dataset consisted of three classes including undamaged, partially damaged, and fully damaged crops. Vgg16 and Res-Net50 as pre-trained deep convolutional neural networks were used to classify these classes. The overall classification accuracy reached 93.7% and 98.2% for the Vgg16 and the ResNet50 algorithms, respectively. The results indicated that a deep neural network has a high ability in distinguishing and categorizing different image-based datasets of rapeseed. The findings also revealed a great potential of Deep learning-based models to classify other damaged crops.
rapeseed classification damaged crops deep neural networks INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ALIMENTOS
Sajad Sabzi Razieh Pourdarbani Mohammad Hossein Rohban Alejandro Fuentes_Penna José Luis Hernández-Hernández Mario Hernández Hernández (2021, [Artículo])
Improper usage of nitrogen in cucumber cultivation causes nitrate accumulation in the fruit and results in food poisoning in humans; therefore, mandatory evaluation of food products becomes inevitable. Hyperspectral imaging has a very good ability to evaluate the quality of fruits and vegetables in a non-destructive manner. The goal of the present paper was to identify excess nitrogen in cucumber plants. To obtain a reliable result, the majority voting method was used, which takes into account the unanimity of five classifiers, namely, the hybrid artificial neural network¿imperialism competitive algorithm (ANN-ICA), the hybrid artificial neural network¿harmonic search (ANN-HS) algorithm, linear discrimination analysis (LDA), the radial basis function network (RBF), and the Knearest- neighborhood (KNN). The wavelengths of 723, 781, and 901 nm were determined as optimal wavelengths using the hybrid artificial neural network¿biogeography-based optimization (ANNBBO) algorithm, and the performance of classifiers was investigated using the optimal spectrum. The results of a t-test showed that there was no significant difference in the precision of the algorithm when using the optimal wavelengths and wavelengths of the whole range. The correct classification rate of the classifiers ANN-ICA, ANN-HS, LDA, RBF, and KNN were 96.14%, 96.11%, 95.73%, 64.03%, and 95.24%, respectively. The correct classification rate of majority voting (MV) was 95.55% for test data in 200 iterations, which indicates the system was successful in distinguishing nitrogen-rich leaves from leaves with a standard content of nitrogen.
artificial neural network cucumber hyperspectral imaging majority voting nitrogen INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ALIMENTOS
Hari Sankar Nayak C.M. Parihar Shankar Lal Jat ML JAT Ahmed Abdallah (2022, [Artículo])
Non-Linear Growth Model Nitrogen Remobilization Right Placement Precision Nitrogen Management CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GROWTH MODELS NITROGEN NUTRIENT MANAGEMENT
Design of antenna arrays for 5G environments using simplification techniques in the feeding network
ELIZVAN JUAREZ PACHECO (2023, [Tesis de doctorado])
En los últimos años, las redes de comunicaciones inalámbricas de quinta generación (5G) han tomado gran relevancia debido al crecimiento del número de usuarios móviles que se conectan a estas redes inalámbricas. Estas redes utilizan arreglos de antenas para generar haces de radiación directivos que pueden escanearse en una o múltiples direcciones en el espacio mediante el control de una red de alimentación. En una red de alimentación convencional cada elemento de antena se alimenta con un dispositivo amplificador y desfasador, lo que resulta en sistemas costosos y complejos de implementar. Por lo tanto, esta tesis de investigación propone nuevas técnicas de diseño que simplifican la red de alimentación al reducir el número de puertos de entrada y dispositivos desfasadores necesarios en el sistema de antenas. Las configuraciones propuestas consideran como requisitos de diseño el nivel de lóbulo lateral (SLL por sus siglas en inglés), rango de escaneo del haz principal y ancho de banda de operación adecuados para sistemas de 5G. Así, se introduce la técnica de bloques CORPS (Estructuras Periódicas de Radiación Coherente, en inglés) como una solución para simplificar la red de alimentación en arreglos lineales y planares. Esta técnica aprovecha la propiedad de interpolación de fase de las redes CORPS de una capa para generar los valores cofasales ideales necesarios para escanear el haz principal. Además, la aplicación de una excitación de amplitud de coseno alzado genera un haz de radiación con bajo SLL. Adicionalmente, se aplica la técnica de bloques CORPS en configuraciones con subarreglos para mejorar la reducción de desfasadores en comparación con la implementación individual de cada tecnología. Los resultados obtenidos mediante simulación electromagnética y mediciones experimentales validan los diferentes diseños propuestos. Todo esto contribuye al estado del arte al presentar diferentes diseños de arreglos de antenas que simplifican la red de alimentación manteniendo buenas características en el patrón de radiación en comparación con diseños tradicionales.
In recent years, fifth-generation wireless networks (5G) have become very relevant due to the exponential growth in the number of mobile users connecting to wireless networks. These networks employ antenna arrays to generate directional radiation beams that can be scanned in one or multiple directions in space by controlling a feeding network. In a conventional feeding network, each antenna element is fed with an amplifier and phase shifter device, which results in expensive and complex systems to implement. Therefore, this thesis proposes novel design techniques that simplify the feeding network by reducing the number of input ports and phase shifter devices required in the antenna system. The proposed configurations take into account requirements such as side lobe level (SLL), scanning range, and bandwidth appropriate for 5G systems. Thus, the CORPS (Coherent Radiation Periodic Structures) blocks technique is introduced as a solution to simplify the feeding network in linear and planar phased arrays. This technique takes advantage of the phase interpolation property of single-layer CORPS to generate the ideal cophasal values necessary for the main beam scanning. Furthermore, the application of a raised-cosine amplitude distribution generates a radiation beam with low SLL. Additionally, the CORPS blocks technique is applied in subarrays configurations to improve the phase shifters reduction compared to the individual implementation of each technology. The results obtained by electromagnetic simulation and experimental measurements validate the different proposed designs. This contributes to the state of the art by different designs of antenna arrays that simplify the feeding network while maintaining good radiation pattern characteristics when compared to traditional designs.
Arreglo de antenas, Red de alimentación, Quinta generación, Arreglo lineal, Arreglo planar Antenna array, Feeding network, Fifth Generation, Linear array, Planar array INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LAS TELECOMUNICACIONES ANTENAS ANTENAS
Non-autonomous Ginzburg-Landau solitons using the He-Li mapping method
MAXIMINO PEREZ MALDONADO Haret Codratian Rosu ELIZABETH FLORES GARDUÑO (2022, [Artículo])
"We find and discuss the non-autonomous soliton solutions in the case of variable nonlinearity and dispersion implied by the Ginzburg-Landau equation with variable coefficients. In this work we obtain non-autonomous Ginzburg-Landau solitons from the standard autonomous Ginzburg-Landau soliton solutions using a simplified version of the He-Li mapping. We find soliton pulses of both arbitrary and fixed amplitudes in terms of a function constrained by a single condition involving the nonlinearity and the dispersion of the medium. This is important because it can be used as a tool for the parametric manipulation of these non-autonomous solitons. "
Nonlinear Ginzburg-Landau Equation Non-Autonomous Solitons CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA FÍSICA FÍSICA
Luis Ricardo Uribe Dávila (2023, [Tesis de maestría])
Vivimos la industria 4.0, misma que no es nueva, ya que sus orígenes se remontan a finales de la década de los 2000, en Alemania. Un pilar de la industria 4.0 es el análisis de datos, conocido como Big Data. El conocer los datos de un proceso, de un estudio, ayuda en gran medida a predecir el comportamiento que tendrá el proceso o la máquina a estudiar en un periodo a corto o mediano plazo. En el presente proyecto se analizan los datos arrojados por un motor eléctrico de corriente alterna, del tipo inducción, jaula de ardilla. El motor está diseñado para trabajar de manera continua, sin embargo, el uso que se le da, es meramente educativo; es decir, no sobre pasa las 15 horas por semana de uso. Mediante la toma de datos de las tres fases de corriente RMS o corriente de valor eficaz que posee el motor eléctrico que se realizará con el microcontrolador Arduino UNO, se analizarán los mismos mediante el software de cómputo numérico MATLAB, ordenando los datos, descartando valores que no aporten información relevante para lograr la predicción de datos. Por último, se llevará a conocer este proyecto a la carrera mecatrónica, área sistemas de manufactura flexible y área automatización, con el fin de que puedan observar de una mejor manera la aplicación y funcionamiento de uno de los pilares de la actual industria 4.0.
We live in industry 4.0, which is not new, since its origins date back to the late 2000s, in Germany. One pillar of industry 4.0 is data analysis, known as Big Data. Knowing the data of a process, of a study, helps greatly to predict the behavior that the process or machine will have to study in a short- or medium-term period. This project analyzes the data released by an electric motor of alternating current, of the type induction, squirrel cage. The engine is designed to work continuously, however, the use given to it is merely educational, that is; only not over spends 15 hours per week of use. By taking data from the three phases of RMS current or effective value current of the electric motor that will be made with the Arduino UNO micro controller, they will be analyzed using MATLAB numerical computing software, ordering the data, discarding values that do not provide relevant information to achieve data prediction. Finally, this project will be presented to the mechatronics career, flexible manufacturing systems area and automation area, so that they can observe in a better way the application and operation of one of the pillars of the current industry 4.0.
Mantenimiento predictivo Regresión lineal Industria 4.0 Big data Corriente RMS Predictive maintenance Linear regression Industry 4.0 Big data RMS Current INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS OTRAS ESPECIALIDADES TECNOLÓGICAS OTRAS OTRAS