Filtros
Filtrar por:
Tipo de publicación
- Artículo (49)
- Documento de trabajo (7)
- Tesis de maestría (5)
- Artículo (1)
- Libro (1)
Autores
- Velitchko Tzatchkov (11)
- WALDO OJEDA BUSTAMANTE (10)
- VICTOR HUGO ALCOCER YAMANAKA (9)
- CARLOS FUENTES RUIZ (7)
- MANUEL ZAVALA TREJO (6)
Años de Publicación
Editores
- Instituto Mexicano de Tecnología del Agua (27)
- Colegio de Postgraduados. (4)
- CICESE (3)
- Colegio de Postgraduados (3)
- Universidad Nacional Autónoma de México (2)
Repositorios Orígen
- Repositorio institucional del IMTA (56)
- Repositorio Institucional CICESE (3)
- Repositorio Institucional CICY (1)
- Repositorio Institucional de la Universidad Autónoma de Ciudad Juárez (1)
- Repositorio Institucional del Tecnológico de Monterrey (1)
Tipos de Acceso
- oa:openAccess (62)
Idiomas
Materias
- INGENIERÍA Y TECNOLOGÍA (40)
- Modelos matemáticos (29)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (12)
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (7)
- Modelos hidrológicos (7)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Detección de comportamiento no verbal en interacción humano-robot
Detection of non-verbal behavior in human-robot interaction
Ernesto Adrián Lozano De la Parra (2023, [Tesis de maestría])
La comunicación no verbal desempeña un papel vital en la interacción humana. En el contexto de la interacción humano-robot (IHR), los robots sociales están diseñados principalmente para la comunicación verbal con los humanos, dejando a la comunicación no verbal como un área de investigación abierta. En este trabajo, se presenta una arquitectura flexible y abierta llamada Software Arquitechture for Nonverbal Interaction in Human-Robot Interaction (SANI-HRI) diseñada para facilitar las interacciones no verbales en IHR. Entre sus componentes se encuentra un Cuaderno Computacional P2P basado en navegador web, aprovechado para codificar, ejecutar y compartir programas reactivos. Pueden incluirse modelos de aprendizaje automático para el reconocimiento en tiempo real de gestos, poses y estados de ´animo, empleando protocolos como MQTT. Otro componente clave es un Broker para distribuir datos entre distintos dispositivos físicos, como robots, dispositivos vestibles y sensores ambientales, así como modelos de aprendizaje automático que comprendan diferentes tipos de datos. Se demuestra la utilidad de esta arquitectura mediante tres escenarios de interacción: (i) el primero que emplea la proxémica y la dirección de la mirada para iniciar un encuentro improvisado, (ii) un segundo que utiliza técnicas de visión por computadora para detectar y analizar expresiones faciales y corporales, así como el uso sensores biométricos para obtener datos de ritmo cardiaco durante una rutina de ejercicio, y (iii) un tercero que incorpora el reconocimiento de objetos y Modelos de Lenguaje Grandes para sugerir comidas a cocinar en función de los ingredientes disponibles. Estos escenarios ilustran cómo los componentes de la arquitectura pueden integrarse para abordar nuevos escenarios, en los que los robots necesitan inferir señales no verbales de los usuarios.
Nonverbal communication plays a vital role in human interaction. In the context of Human-Robot Interaction (HRI), social robots are designed primarily for verbal-based communication with humans, making nonverbal communication an open research area. We present a flexible, open framework called Software Architecture for Nonverbal Interaction in Human-Robot Interaction (SANI-HRI) designed to facilitate nonverbal interactions in HRI. Among its components it has a P2P Browser-Based Computational Notebook, leveraged to code, run, and share reactive programs. Machine-learning models can be included for real-time recognition of gestures, poses, and moods, employing protocols such as MQTT. Another key component is a broker for distributing data among different physical devices like the robot, wearables, and environmental sensors and also machine learning models. We demonstrate this framework’s utility through three interaction scenarios: (i) the first one employing proxemics and gaze direction to initiate an impromptu encounter, (ii) a second that uses computer vision techniques to detect and analyze facial and body expressions, as well as the use of biometric sensors to obtain heart rate data during a workout routine, and (iii) a third one incorporating object recognition and a Large-Language Model to suggest meals to be cooked based on available ingredients. These scenarios illustrate how the framework’s components can be seamlessly integrated to address new scenarios, where robots need to infer nonverbal cues from users.
Interacción humano-robot, Comunicación no verbal, Broker MQTT, Notebook computacional, Modelos linguísticos grandes, SANI-HRI Human-robot interaction, Nonverbal communication, Broker MQTT, Computational notebook, Large language models, SANI-HRI INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ORDENADORES SISTEMAS DE RECONOCIMIENTO DE CARACTERES SISTEMAS DE RECONOCIMIENTO DE CARACTERES
Escenarios futuros de eventos extremos de precipitación y temperatura en México
Future changes of precipitation and temperature extremes in Mexico
Ernesto Ramos Esteban (2024, [Tesis de maestría])
Diferentes estudios a escala mundial indican un incremento en frecuencia de eventos climáticos extremos debido al calentamiento global y sugieren que podrían intensificarse en el futuro. El objetivo de este trabajo es analizar los posibles cambios de 12 índices climáticos extremos (ICE) de precipitación y temperatura en 15 regiones de México, el sur de los Estados Unidos y Centroamérica para un período histórico (1981-2010), un futuro cercano (2021-2040), un futuro intermedio (2041-2060) y un futuro lejano (2080-2099). Se utilizó el reanálisis ERA5 como referencia en la evaluación histórica de los modelos climáticos globales (MCG) y para las proyecciones se analizaron los ICE de diez MCG del Proyecto de Intercomparación de Modelos Climáticos, fase 6 (CMIP6), de acuerdo con dos escenarios de Vías Socioeconómicas Compartidas (SSPs), uno de bajas emisiones (SSP2-4.5) y otro de altas emisiones (SSP3-7.0). Los MCG reproducen muy bien los índices extremos de temperatura histórica y los días consecutivos secos, pero subestiman la lluvia promedio y la lluvia extrema en las zonas más lluviosas desde el centro de México hasta Centroamérica. Históricamente, se observaron tendencias positivas de las temperaturas extremas (TXx y TNn) en todas las regiones, pero sólo en algunas regiones fueron significativas, mientras que los índices de lluvia extrema (R95p, R10mm y R20mm) presentaron tendencias negativas, pero pequeñas. Las proyecciones indican que las temperaturas extremas podrían seguir incrementándose en el futuro, desde 2° C hasta 5° C a mitad y final de siglo, respectivamente. La contribución de la precipitación extrema arriba del percentil 95 (R95p) se podría incrementar entre un 10 % y 30 %, especialmente en la región subtropical, mientras que la precipitación podría disminuir en las regiones tropicales. Este estudio es el primero que analiza los cambios futuros de índices extremos del CMIP6 a escala regional (en 15 regiones) de México, el sur de Estados Unidos y Centroamérica.
Global-scale studies indicate an increase in the frequency of extreme weather events due to global warming and suggest that they could further intensify in the future. This study aims to assess potential changes in 12 extreme climate indices (ECI) related to precipitation and temperature in 15 regions in Mexico, the southern United States, and Central America for different periods: a historical period (1981-2010), a near future (2021-2040), an intermediate future (2041-2060), and a far future (2080-2099). The ERA5 reanalysis was used as a reference for the historical evaluation of global climate models (GCMs), and ECI from ten GCMs of phase 6 (CMIP6) from the Coupled Model Intercomparison Project were employed for the projections and examined under two Shared Socioeconomic Pathways (SSPs) scenarios, one characterized by low emissions (SSP2-4.5) and another representing high greenhouse gas emissions (SSP3-7.0). The GCMs reproduce historical extreme temperature indices and consecutive dry days very well. However, they underestimate average and extreme rainfall from central Mexico to Central America in the wetter areas. Historically, positive trends in extreme temperatures (TXx and TNn) were observed across all regions. However, statistical significance was only present in certain regions, while extreme rainfall indices (R95p, R10mm, and R20mm) exhibited small negative trends. The projections suggest that extreme temperatures could continue to increase in the future, from 2°C to 5°C by the mid and late century, respectively. The contribution of extreme precipitation above the 95th percentile (R95p) could increase by 10% to 30%, particularly in the subtropical regions, while precipitation might decrease in tropical regions. This study is the first to analyze future changes in extreme indices from CMIP6 at a regional scale (across 15 regions) in Mexico, the southern United States, and Central America.
Centroamérica, CMIP6, escenarios SSP, extremos climáticos, intercomparación de modelos climáticos, México Central America, climate extremes, CMIP6, intercomparison of climate models, Mexico, SSP scenarios CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA FÍSICA (VE R 5603 .04) OCEANOGRAFÍA FÍSICA (VE R 5603 .04)