Búsqueda avanzada


Área de conocimiento




115 resultados, página 3 de 10

Análisis comparativo de licencias aplicables al software gubernamental en la Administración Pública Federal de México

Jazmin Aquino Cruz (2023, [Otro, Trabajo de grado, maestría])

Este estudio examina los principales retos relacionados con La gestión gubernamental del software en la administración pública federal de México y analiza las características y aplicaciones de diferentes tipos de licencias no restrictivas existentes, incluidas las licencias públicas de software. El objetivo de este estudio es identificar qué tipos de licencias de software son más compatibles con el carácter público del software gubernamental en el Gobierno Federal mexicano.

Software libre Software privativo Creative Commons INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS CIENCIAS TECNOLÓGICAS

Application of ammonium to a N limited arable soil enriches a succession of bacteria typically found in the rhizosphere

Yendi Navarro-Noya Marco Luna_Guido Nele Verhulst Bram Govaerts Luc Dendooven (2022, [Artículo])

Crop residue management and tillage are known to affect the soil bacterial community, but when and which bacterial groups are enriched by application of ammonium in soil under different agricultural practices from a semi-arid ecosystem is still poorly understood. Soil was sampled from a long-term agronomic experiment with conventional tilled beds and crop residue retention (CT treatment), permanent beds with crop residue burned (PBB treatment) or retained (PBC) left unfertilized or fertilized with 300 kg urea-N ha-1 and cultivated with wheat (Triticum durum L.)/maize (Zea mays L.) rotation. Soil samples, fertilized or unfertilized, were amended or not (control) with a solution of (NH4)2SO4 (300 kg N ha-1) and were incubated aerobically at 25 ± 2 °C for 56 days, while CO2 emission, mineral N and the bacterial community were monitored. Application of NH4+ significantly increased the C mineralization independent of tillage-residue management or N fertilizer. Oxidation of NH4+ and NO2- was faster in the fertilized soil than in the unfertilized soil. The relative abundance of Nitrosovibrio, the sole ammonium oxidizer detected, was higher in the fertilized than in the unfertilized soil; and similarly, that of Nitrospira, the sole nitrite oxidizer. Application of NH4+ enriched Pseudomonas, Flavisolibacter, Enterobacter and Pseudoxanthomonas in the first week and Rheinheimera, Acinetobacter and Achromobacter between day 7 and 28. The application of ammonium to a soil cultivated with wheat and maize enriched a sequence of bacterial genera characterized as rhizospheric and/or endophytic independent of the application of urea, retention or burning of the crop residue, or tillage.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AMMONIUM CROP RESIDUES WHEAT MAIZE TILLAGE SOIL

Precise irrigation water and nitrogen management improve water and nitrogen use efficiencies under conservation agriculture in the maize-wheat systems

Mahesh Gathala ML JAT (2023, [Artículo])

A 3-year field experiment was setup to address the threat of underground water depletion and sustainability of agrifood systems. Subsurface drip irrigation (SDI) system combined with nitrogen management under conservation agriculture-based (CA) maize-wheat system (MWS) effects on crop yields, irrigation water productivity (WPi), nitrogen use efficiency (NUE) and profitability. Grain yields of maize, wheat, and MWS in the SDI with 100% recommended N were significantly higher by 15.8%, 5.2% and 11.2%, respectively, than conventional furrow/flood irrigation (CT-FI) system. System irrigation water savings (~ 55%) and the mean WPi were higher in maize, wheat, and MWS under the SDI than CT-FI system. There was saving of 25% of fertilizer N in maize and MWS whereas no saving of N was observed in wheat. Net returns from MWS were significantly higher (USD 265) under SDI with 100% N (with no subsidy) than CT-FI system despite with higher cost of production. The net returns were increased by 47% when considering a subsidy of 80% on laying SDI system. Our results showed a great potential of complementing CA with SDI and N management to maximize productivity, NUE, and WPi, which may be economically beneficial and environmentally sound in MWS in Trans-IGP of South Asia.

Subsurface Drip Irrigation Nitrogen Management Irrigation Water Productivity Water Savings CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA IRRIGATION WATER NITROGEN-USE EFFICIENCY CONSERVATION AGRICULTURE MAIZE WHEAT